期刊文献+

单幅红外图像上的地雷检测 被引量:1

Landmine Detection on Single Infrared Image
下载PDF
导出
摘要 针对被动红外成像地雷探测技术中的单散雷探测问题,结合一维信号检测理论以及现代信号处理算法,对红外图像进行处理。文章从单幅红外图像入手,在分析了红外图像上地雷检测原理的基础上,结合背景红外图像的特性,给出了地雷信号及背景图像信号的模型,再从各模型中未知参数的特点出发,利用现代信号处理算法,对未知参数进行估计。当地雷信号及背景图像信号都确定后,采用广义相关器以实现地雷信号的探测。对埋有似雷物的单幅红外图像进行检测试验。结果表明,文中方法能够清晰的标示出地雷的存在及其位置。 For single landmine detection with the passive infrared imaging technology of the landmine detection, the infrared images were processed according to the 1-D signal detection theory and the algorithms for modem signal processing. The signal models of landmine and background image were given by analyzing the theory of landmine detection on the infrared image and combining the characteristic of the background infrared image. Then, combined with the characteristics of the models' unknown parameters, we estimated the unknown parameters through the algorithms of modem signal processing. When the landmine and the background image signal were determined, the generalized correlator was used to detect the landmine. Testing results with the single infrared image burying the target show that the method can mark the landmine clearly.
出处 《光电工程》 CAS CSCD 北大核心 2009年第2期45-49,共5页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(60507003) 中国科学院国防科技创新基金支持 中国科学院知识创新工程领域前沿资助项目 吉林省科技发展计划杰出青年项目支持 国家863计划资助项目(2007AA12Z110)
关键词 红外成像 地雷探测 自回归模型 参数估计 infrared imaging landmine detection autoregressive model parameter estimation
  • 相关文献

参考文献12

  • 1Christopher F F. Jane's Military and Vehicles Logistics [M]. London: Jane's Information Group, 1994.
  • 2Maechler Ph. Detection technologies for anti-personnel mines [C]// the Symposium on Autonomous Vehicles in Mine Countermeasures, Monterey, April 4-6, 1995: 6150-6154.
  • 3Ye Xiao-ning, Cui Wei, Berg Daniel P, et al. Detection of electronic mines, timers, and fuses through electromagnetic interference signatures and stimulated emissions [J]. Proceeding of SPIE, 2000, 4038: 66-77.
  • 4Liu Feng, Tantum Stacy L, Collins Leslie M, et al. Statistical signal processing for detection of buried land mines using quadrupole resonance [J]. Proceeding of SPIE, 2000, 4038: 572-577.
  • 5Dobeck Gerald J. Algorithm fusion for the detection and classification of sea mines in the very shallow water region using side-scan sonar imagery [J]. Proceeding of SPIE, 2000, 4038: 348-361.
  • 6Feng Xuan, Zhou Zheng-shu, Takao Kobayashi, et al. Estimation of ground surface topography and velocity model by SARGPR and its application to landmine detection [J]. Proceeding of SPIE, 2005, 5794:514-521.
  • 7Gu Irene Yu-hua, Tjahjadi Tardi. Detecting and locating landmine fields from vehicle- and air-borne measured IR images [J]. Pattern Reeognition, 2002, 3502): 3001-3014.
  • 8Muscio Alberto, Corticelli Mauro A. Experiments of thermographic landmine detection with reduced size and compressed time [J]. Infrared Physics & Technology, 2004, 46: 101-107.
  • 9Lundberg Magnus, Gu Irene Y H. A 3-D matched filter for detection of land mine using spatio-temporal thermal modeling [J]. ProceedingofSPIE, 2000, 4038: 179-188.
  • 10Lundberg Magnus, Svensson Lennart B, Gu Irene Y H. Infrared Detection of Buried Land Mines Based on Texture Modeling [J]. Proceeding of SPIE, 2001, 4394: 199-206.

二级参考文献13

  • 1刘永信,魏平,侯朝桢.视频图像中运动目标检测的快速方法[J].仪器仪表学报,2002,23(z3):163-166. 被引量:21
  • 2Christopher Richard WREN,All AZARBAYEJANI,Trevor DARRELL,et al.Pfinder:real-time tracking of the human body[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):780-785.
  • 3Chris STAUFFER,W.E.L.GRIMSON.Adaptive background mixture models for real-time tracking[J].Computer Vision and Pattern Recognition, 1999.IEEE Computer Society Conference on,1999,2:245-252.
  • 4Dar-Shyang LEE,Jonathan J.HULL,Berna EROL.A Bayesian framework for Gaussian mixture background modeling [A].Image Processing, 2003.Proceedings.2003 International Conference on,2003,3:973-976.
  • 5Zoran ZIVKOVIC,Ferdinand VAN DER HEIJDEN.Recursive unsupervised learning of finite mixture models[J].IEEE Transactions on pattern analysis and machine intelligence,2004,26(5):651-656.
  • 6Zoran ZIVKOVIC.Improved adaptive Gaussian mixture model for background subtraction[J].Pattern Recognition, 2004.ICPR 2004.Proceedings of the 17th International Conference on,2004,2:28-31.
  • 7Ahmed ELGAMMAL,David HARWOOD,Larry DAVIS.Non-parametric model for background subtraction [A].Proceedings of the 6th European Conference on Computer Vision[C].London, UK:Springer-Verlag,2000.751-767.
  • 8Christof RIDDER,Olaf MUNKELT,Harald KIRCHNER.Adaptive background estimation and foreground detection using Kalman-Filtering [A].Proceedings of the International Conference on recent Advances in Mechatronics[C].Istanbul, Turkey:UNESCO Chair on Mechatronics,1995.193-199.
  • 9Kentaro TOYAMA,John KRUMM,Barry BRUMITT,et al.Wallflower:principles and practice of background maintenance[J].Computer Vision, 1999.The Proceedings of the Seventh IEEE International Conference on,1999,1:255-261.
  • 10P.REMAGNINO,A.BAUMBERG,T.GROVE,et al.An integrated traffic and pedestrian model-based vision system[J].Proceedings of the eighth British Machine Vision Conference,1997,2:380-389.

共引文献12

同被引文献13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部