期刊文献+

复数轮廓波变换纹理图像检索系统 被引量:8

Texture Image Retrieval System Based on Complex Contourlet Transform
下载PDF
导出
摘要 针对基本轮廓波变换纹理图像检索系统检索率低下的问题,提出了一种基于复数轮廓波变换(CCT)的纹理图像检索系统。该系统采用的复数轮廓波变换由双树复小波变换级联临界下采样方向滤波器构成,特征向量采用子带系数的能量和标准偏差连接而成,以Canberra距离为相似度度量标准;比较了基于同样架构的基本轮廓波变换(CT)、无下采样轮廓波变换(NSCT)、半下采样轮廓波变换(CTS)和CCT纹理检索系统的性能。实验结果表明:在特征向量长度、检索时间、所需存储空间基本相同的情况下,基于CCT的检索系统比CT、CTS和NSCT检索系统具有更高的检索率;各种轮廓波变换分解结构尺度数对检索率也有较大的影响。 Aiming at the problem of low retrieval rate of basic contourlet transform texture image retrieval system, a texture image retrieval system based on Complex Contourlet Transform (CCT) was proposed. The contourlet transform used in the system was constructed by dual tree complex wavelet transform followed by critically subsampled directional filter banks, sub-bands energy and standard deviations were cascaded to form feature vectors, and the similarity metric was Canberra distance. The performance of retrieval system was compared including original contourlet transform, non-subsampled contourlet transform, semi-subsampled contourlet transform (CTS) and CCT under the same system structure. Experimental results show that the image retrieval system based on CCT has higher retrieval rate than those of CT, CTS and NSCT with almost same length of feature vectors, retrieval time and memory needed, and decomposition scale number can make significant effects on average retrieval rates.
出处 《光电工程》 CAS CSCD 北大核心 2009年第2期110-115,共6页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(60572048)
关键词 轮廓波变换 纹理图像 Canberra距离 检索率 检索时间 contourlet transform texture image Canberra distance retrieval rate retrieval time
  • 相关文献

参考文献18

  • 1Smoulders A W M, Worring M, Santini S, et al. Content-Based Image Retrieval at the End of the Early Years [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2000, 22(12): 1349-1380.
  • 2Do M N, Vetterli M. Wavelet-Based Texture Retrieval Using Generalized Gaussian Density and Kullback-Leibler Distance [J]. IEEE Transactions on Image Processing(S1057-7149), 2002, 11(2): 146-158.
  • 3Laine A, Fan J. Texture Classification by Wavelet Packet Signatures [J]. IEEE Transactions on Pattern Analysis and Machine lntemgence(S0162-8828), 1993, 15(11): 1186-1191.
  • 4Chang T, Kuo C -C J. Texture Analysis and Classification with Tree-Structure Wavelet Transform [J]. IEEE Transactions on Image Processing(S1057-7149), 1993, 2(4): 429-441.
  • 5Smith J R, Chang Shih-Fu. Transform Features for Texture Classification and Discrimination in Large Image Databases [C]// IEEE International Conference Image Processing, Austin, TX; USA, Nov 13-16, 1994. Washington D C, USA: IEEE, 1994, 3: 407-411.
  • 6Unser M. Texture Classification and Segmentation Using Wavelet Frames [J]. IEEE Transactions on Image Processing (S1057-7149), 1995, 4(11): 1549-1560.
  • 7Manjunath B S, Ma W Y. Texture Features for Browsing and Retrieval of Image Data [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 1996, 18(8): 837-842.
  • 8Van de Wouwer G, Scheunders P, Van Dyek D. Statistical Texture Characterization from Discrete Wavelet Representations [J]. IEEE Transaelions on Image Processing, 1999, 8(4): 592-598.
  • 9Randen T, Husoy J H. Filtering for Texture Classification: A Comparative Study [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 1999, 21(4): 291-310.
  • 10Do M N, Vetterli M. Contourlets: A Directional Multiresolution Image Representation [J]. 2002 International Conference on Image Processing(S1522-4880), 2002, 1: I-357-I-360.

同被引文献113

  • 1白志鹏,董海燕,蔡斌彬,朱坦,姚学祥.灰霾与能见度研究进展[J].过程工程学报,2006,6(z2):36-41. 被引量:65
  • 2闵敏,王普才,宗雪梅,夏俊荣,孟晓艳.灰霾过程中的气溶胶特性观测研究[J].气候与环境研究,2009,14(2):153-160. 被引量:34
  • 3董傲霜,宋宏亮.基于SIFT特征和颜色融合的图像检索方法[J].吉林大学学报(工学版),2013,43(S1):440-444. 被引量:4
  • 4朱元,郑海洋,顾学军,周留柱,郭晓勇,赵文武,方黎,张为俊.大气气溶胶的检测方法研究[J].环境科学与技术,2005,28(B06):175-177. 被引量:14
  • 5Mallat S. A Wavelet Tour of Signal Processing [M]. Orlando: Academic Press, 1999.
  • 6Daubechies I. Ten Lectures on Wavelets [M]. Philadelphia, PA: SIAM, 1992.
  • 7Le Pennec E, Mallat S. Sparse geometric image representations with bandelets [J]. IEEE Transactions on Image Processing (S0041-624X), 2005, 14(4): 423-438.
  • 8Candes E J, Donoho D L. Continuous curvelet transform: Ⅱ. discretization and frames [J]. Applied and Computational HarmonicAnalysis(S1063-5203), 2005, 19(2): 198-222.
  • 9Do M N, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation [J]. IEEE Transactions on Image Processing (S0041-624X), 2005, 14(12): 2091-2106.
  • 10Burt P J, Adelson E H. The Laplacian pyramid as a compact image code [J]. IEEE Transactions on Communications (S0090-6778), 1983, 31(4): 532-540.

引证文献8

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部