期刊文献+

基于均值移动确定性漂移的改进CONDENSATION人脸跟踪 被引量:2

Improved CONDENSATION Face Tracking Algorithm Based on Mean-shift Drift
下载PDF
导出
摘要 针对视频序列目标跟踪粒子滤波经典CONDENSATION算法用先验转移概率,即采用一阶或二阶AR模型难以有效进行粒子传播的问题,提出了一种改进的CONDENSATION人脸跟踪算法。首先利用高效的均值移动跟踪器以低廉的计算成本初步进行人脸目标跟踪定位,并用此初步跟踪结果来确定CONDENSATION粒子动态传播模型中的确定性漂移部分,然后只需加入一个较小的随机扩散噪声来完成粒子的传播。由于这样所得的粒子点能较为集中地分布在状态的真实区域附近,因而大大提高了粒子的利用效率。人脸跟踪实验表明,该改进算法的性能明显优于原CONDENSATION方法。 In the classical CONDENSATION for object tracking, a prior transition probability, i.e., first or second order AR dynamic model is used to propagate the particles. However, it results in poor performance frequently. In order to propagate the particles efficiently, an improved CONDENSATION face tracking algorithm based on mean-shift drift is proposed. The approach uses the efficient mean shift tracker to attain coarse location of face target, then uses these results to determine the deterministic drift, finally propagates the particles with a small stochastic diffusion added. Because sampling via the proposed method can always make particles cluster around the true state region, the particles efficiency can be improved greatly. The experimental results of face tracking demonstrate that the performance of proposed algorithm is superior to the standard CONDENSATION.
出处 《光电工程》 CAS CSCD 北大核心 2009年第2期137-142,共6页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(60672094) 南京理工大学科技发展基金资助项目
关键词 人脸跟踪 粒子滤波 CONDENSATION 均值移动 face tracking particle filter CONDENSATION mean shift
  • 相关文献

参考文献12

  • 1Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Transactions on Signal Proeessing(S1053-587X), 2002, 50(2): 174-188.
  • 2Candy J W. Bootstrap particle filtering [J]. IEEE Signal Processing Magazine(S1053-5888), 2007, 24(4): 73-85.
  • 3Isard M, Blake A. Visual tracking by stochastic propagation of conditional density [C]// Proceedings of European Conference on Computer Vision, Cambridge, UK, Apr 15-18, 1996. Springer, 1996, 1: 343-356.
  • 4Isard M, Blake A. CONDENSATION-conditional density propagation for visual tracking [J]. International Journal of Computer Vision(S0920-5691), 1998, 29(1): 5-28.
  • 5Isard M, Blake A. ICONDENSATION: Unifying low-level and high-level tracking in a stochastic framework [C]// Proceedings of European Conference on Computer Vision, Freiburg, Germany, Jan 2-6, 1998. Springer, 1998, 1: 893-908.
  • 6XU Xin-yu, LI Bao-xin. Adaptive Rao-Blackwellized particle filter and its evaluation for tracking in surveillance [J]. IEEE Transactions on Image Processing(S1057-7149), 2007, 16(3): 838-849.
  • 7CHENG Chang, Ansari R. Kernel particle filter for.visual tracking [J]. IEEE Signal Processing Letters (S1070-9908), 2005, 12(3): 242-245.
  • 8LI Yuan, Ai Hai-zhou, Yamashita T, et al. Tracking in Low Frame Rate Video: A Cascade Particle Filter with Discriminative Observers of Different Life Spans [J]. IEEE Transactions on Pattern Analysis and Machine IntelHgenee(S0018-9340), 2008, 30(10): 1728-1740.
  • 9CHANG Wen-yah, CHEN Chu-song, JIAN Yong-dian. Visual Tracking in High-Dimensional State Space by Appearance-Guided Particle Filtering [J]. 1EEE Transactions on Image Processing(S1057-7149), 2008, 17(7): 1154-1167.
  • 10Bregonzio M, Taj M, Cavallaro A. Multi-modal particle filtering tracking using appearance motion and audio likelihoods [C]// IEEE International Conference on Image Processing, San Antonio, TX, Sept 16 -Oct 19, 2007. Washington D C, USA: IEEE, 2007, 5: 33-36.

同被引文献19

  • 1PEREC P, VERMAAK J, BLAKE A. Data fusion for visual tracking with particles [ J ]. Proceeding of the IEEE, 2004,92 ( 3 ) : 495- 513.
  • 2DOUCET A, FREITAS N D, GORDON N. Sequential Monte Carlo in practice[ M]. New York:Springer, 2001:9- 19.
  • 3ISARD M, BLAKE A. Visual tracking by stochastic propagation of conditional density [ C ]//Proc of the 4th European Conference on Computer Vision. Cambridge : [ s. n. ] , 1996 : 343- 356.
  • 4DOUCET A, GODSILL S, ANDRIEU C. On sequential Monte Carlo sampling methods for Bayesian filtering[ J]. Statistics and Computing, 2000,10(3 ) : 197- 208.
  • 5GORDON N J, SALMOND D J, SMITH A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation [ J ]. IEEE Pro-ceedings Fin Radar and Signal Processing, 1993,140(2) :107- 113,.
  • 6CHENG Chang, ANSARI R. Kernel particle for visual tracking[ J]. IEEE Signal Processing Letters, 2005, 12(3):242-245.
  • 7NUMMIARO K, KOLLER-MEIER E, GOOL L van. An adaptive color-based particle filter[ J]. Image and Vision Computing, 2003, 21(1) :99- 110.
  • 8BIRCHFIELD S T, RANGARAJAN S. Spatiograms versus histograms for region-based tracking[ C ]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC : IEEE Computer Society ,2005 : 1158- 1163.
  • 9COMANICIU D, RAMESH V, MEER P. Real-time tracking of nonrigid objects using mean shift[ C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Computer Society ,2000 : 142- 149.
  • 10边肇祺 张学工.模式识别[M].北京:清华大学出版社,1999.282-283.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部