期刊文献+

基于无结构网格单元中心有限体积法的二维对流扩散方程离散 被引量:11

Discretization of Two-dimensional Advection-Diffusion Equation with Unstructured Cell Center Finite Volume Method
下载PDF
导出
摘要 在无结构网格单元中心有限体积法二维水流模型基础上,建立物质输运对流扩散方程离散模式.通过通量重构法和SOM(Support Operators Method),分别对输运方程的对流项和扩散项进行离散.该离散模式具有空间二阶精度,并适用于任意多边形无结构网格.通过纯对流和纯扩散算例对模型进行检验和验证,结果表明,模型能够较好地模拟物质输运的对流扩散问题.应用模型模拟瓯江河口的盐度输运,通过计算值与实测值对比,进一步检验模型. In a two-dimensional shallow water flow model advective-diffusion derivative equation is discretized with cell center finite volume method. Flux reconstruction and support operators method are used for advective and diffusive terms, respectively. The model is second order and can be used for arbitrarily unstructured grids. A pure advective problem and a pure diffusion problem verify the algorithm. The model is used to simulate salt transport in Oujiang estuary. Water level, velocity and salt calculated are in good agreement with measurement.
出处 《计算物理》 EI CSCD 北大核心 2009年第1期17-26,共10页 Chinese Journal of Computational Physics
基金 国家自然科学基金(50379027)资助项目
关键词 浅水流动 对流扩散 通量重构 SOM 无结构网格 shallow water flow advection-diffusion flux reconstruction support operators method unstructured grid
  • 相关文献

参考文献14

  • 1WANGZhi-li GENGYan-fen JINSheng.AN UNSTRUCTURED FINITE-VOLUME ALGORITHM FOR NONLINEAR TWO-DIMENSIOAL SHALLOW WATER EQUATION[J].Journal of Hydrodynamics,2005,17(3):306-312. 被引量:17
  • 2Cea L, French J R, Vazquez-Cendon M E, Numerical modelling of tidal flows in complex estuaries including turbulence: An unstructured finite volume solver and experimental validation [J]. International Journal for Numerical Methods in Engineering, 2006, 67:1909 - 1932.
  • 3丁玲,逄勇,赵棣华,吴建强,吕俊.通量差分裂格式的二维水流水质计算的适用性分析[J].水科学进展,2004,15(5):561-565. 被引量:9
  • 4Naifar F. A finite volume solver for the simulation of transport processes [ D]. PhD. Thesis. International Institute for Infrastructural, Hydraulic and Environmental Engineering, Delft, the Netherlands. 2006.
  • 5Benkhaldoun F, Elmahi I, Seaid M. Well-balanced finite volume schemes for pollutant transport by shallow water equations on unstructured meshes [J]. Journal of Computational Physics, 2007, 226(2): 1753- 1783.
  • 6Lin B L, Falconer R A. Tidal flow and transport modeling using ultimate QUICKST scheme [J]. Journal of Hydraulic Engineering, 1997, 123(4) : 303 - 314.
  • 7Karpik S R, Crockett S R. Semi-Lagrangian algorithm for two-dimensional adveetion-diffusion equation on curvilinear coordinate meshes [J]. Journal of Hydraulic Engineering, 1997, 123(5): 389-401.
  • 8Darwish M S, Moukalled F. TVD schemes for unstructured grids [ J]. International Journal of Heat and Mass Transfer, 2003, 46:599 - 611.
  • 9van Leer. Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov's method [ J]. Journal of Computational Physics, 1979, 32:101 - 136.
  • 10Roe P L. Some contributions to the modeling of discontinuous flows [J]. lectures Notes in Applied Mathematics, 1985, 22:163 - 193.

二级参考文献20

  • 1胡四一,谭维炎.无结构网格上二维浅水流动的数值模拟[J].水科学进展,1995,6(1):1-9. 被引量:56
  • 2Zhao D H, Shen H W, Lai J S, et al.Approximate Riemann Solvers In FVM For 2-D Hydraulic Shock Wave Modelling[J]. Journal of Hydraulic Engineering, 1996, 122(12):692-702.
  • 3Zhao D H,Qi C.Water quality simulation in reaches of Hanjiang River by 2-D model[A]. Proceedings of The Second International Symposium on Environmental Hydraulics[C]. Hong Kong,CHINA, 1998.
  • 4Roe P M.Approximate Riemann Solvers,Parameter Vectors,and Difference Schemes[J].JCP, 1981, 43:357-371.
  • 5Sweby P K.High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws[J].J Society for Industrial and Applied Mathematics, 1984, 21(5):995-1 011.
  • 6ROE P.L. Approximate Riemann solvers,parameter vectors and difference-schemes[J]. Journal of Computational physics,1997,135: 250-258.
  • 7OSHER S.,SLOMON F. Upwind difference-schemes for hyperbolic systems of conservation-laws[J]. Mathematics of Computation,1982: 339-374.
  • 8HUBBARD M.E. Multidimensional slope limiters for MUSCL-type finite volume schemes on unstructured grids[J]. Journal of Computational physics,1999,155: 54-74.
  • 9DARWISH M.S.,Moukalled F. TVD schemes for unstructured grids[J]. International Journal of Heat and Mass Transfer,2003,46: 600-610.
  • 10BERMUDEZ A.,VAZQUEZ M.E. Upwind methods for hyperbolic conservation laws with source terms[J]. Computers and Fluids,1994,23(8): 1049-1071.

共引文献22

同被引文献112

引证文献11

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部