期刊文献+

Structural basis for dsRNA recognition by NS1 protein of influenza A virus 被引量:8

Structural basis for dsRNA recognition by NS1 protein of influenza A virus
下载PDF
导出
摘要 流行性感冒 A 病毒是引起周期的流行威胁的重要人的病原体。Nonstructural 蛋白质 1 (NS1 ) 流行性感冒的蛋白质一个病毒(NS1A ) 对主人防卫防护病毒。这里,我们报导在 1.7 点绑在双 stranded RNA (dsRNA ) 的 NS1A RNA 有约束力的领域(RBD ) 的水晶结构 ? 。NS1A RBD 形成 homodimer 由它二聚的反平行的伪 - helices 形成的保存凹面表面在一个长度无关的模式认出 A 形式 dsRNA 的主要的沟。dsRNA 被广泛的氢契约被一双不变的精氨酸(Arg38 ) 从两单体抛锚。根据结构的观察,唯一的 Arg38-Arg38 对和二 Arg35-Arg46 配对的等温的滴定热量测定试金表演为 dsRNA 绑定是关键的,并且那 Ser42 和 Thr49 为 dsRNA 绑定也是重要的。Agrobacterium 合作渗入试金进一步支持唯一的 Arg38 对在在 vivo 有约束力的 dsRNA 起重要作用。 Influenza A viruses are important human pathogens causing periodic pandemic threats. Nonstructural protein 1 (NS1) protein of influenza A virus (NS1A) shields the virus against host defense. Here, we report the crystal structure of NS1A RNA-binding domain (RBD) bound to a double-stranded RNA (dsRNA) at 1.7A. NS1A RBD forms a homodimer to recognize the major groove of A-form dsRNA in a length-independent mode by its conserved concave surface formed by dimeric anti-parallel a-helices, dsRNA is anchored by a pair of invariable arginines (Arg38) from both monomers by extensive hydrogen bonds. In accordance with the structural observation, isothermal titration calorimetry assay shows that the unique Arg38-Arg38 pair and two Arg35-Arg46 pairs are crucial for dsRNA binding, and that Ser42 and Thr49 are also important for dsRNA binding. Agrobacterium co-infiltration assay further supports that the unique Arg38 pair plays important roles in dsRNA binding in vivo.
出处 《Cell Research》 SCIE CAS CSCD 2009年第2期187-195,共9页 细胞研究(英文版)
关键词 流性行感冒病毒 蛋白质 RNA NS1 crystal structure, influenza A virus, nonstructural protein 1, protein-RNA complex
  • 相关文献

参考文献25

  • 1Reid AH, Taubenberger JK, Fanning TG. The 1918 Spanish influenza: integrating history and biology. Microbes Infect 2001; 3:81-87.
  • 2Ghedin E, Sengamalay N, Shumway M, et al. Large-scale sequencing &human influenza reveals the dynamic nature of viral genome evolution. Nature 2005; 437:1162-1166.
  • 3Fernandez-Sesma A, Marukian S, Ebersole B J, et al. Influenza virus evades innate and adaptive immunity via the NS 1 protein. J Vtrol.2006; 80:6295-6304.
  • 4Melen K, Kinnunen L, Fagerlund R, etal. Nuclear and nucleolar targeting of influenza A virus NS 1 protein: striking differences between different virus subtypes. J Viro12007; 81:5995-6006.
  • 5Kochs G, Garcia-Sastre A, Martinez-Sobrido L. Multiple antiinterferon actions of the influenza A virus NS1 protein. J Virol 2007; 81:7011-7021.
  • 6Bergmann M, Garcia-Sastre A, Carnero E, et al. Influenza virus NS 1 protein counteracts PKR-mediated inhibition of replication. J Viro12000; 74:6203-6206:
  • 7Min JY, Li S, Sen GC, Krug RM. A site on the influenza A virus NSI protein mediates both inhibition of PKR activation and temporal regulation of viral RNA synthesis. Virology 2007; 363:236-243.
  • 8Qiu Y, Krug RM. The influenza virus NS1 protein is a poly(A)- binding protein that inhibits nuclear export ofmRNAs containing poly(A). J Virol 1994; 68:2425-2432.
  • 9Lu Y, Wambach M, Katze MG, Krug RM. Binding of the influenza vires NS1 protein to double-stranded RNA inhibits the activation of the protein kinase that phosphorylates the elF-2 translation initiation factor. Virology 1995; 214:222-228.
  • 10Qiu Y, NemeroffM, Krug RM. The influenza virus NS1 protein binds to a specific region in human U6 snRNA and inhibits U6- U2 and U6-U4 snRNA interactions during splicing. RNA 1995; 1:304-316.

同被引文献46

  • 1LI WeiZhong,WANG GeFei,ZENG Jun,ZHANG DanGui,ZHANG Heng,CHEN XiaoXuan,CHEN YouYing & Li KangSheng Department of Microbiology and Immunology,Shantou University Medical College,Shantou 515041,China.Differential transcription-activating capability of NS1 proteins from different influenza virus subtypes expressed in yeast[J].Science China(Life Sciences),2009,52(6):545-550. 被引量:2
  • 2张传福,周晓巍,黄培堂.A型流感病毒非结构蛋白NS1与宿主相互作用的研究进展[J].生物技术通讯,2007,18(4):697-699. 被引量:3
  • 3Hammond SM.Dicing and slicing:the core machinery of the RNA interference pathway [ J ]. FEBS Letter, 2005,579:5822- 5829.
  • 4Zeng Y,Sankala H,Zhang X,et al. Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies[J]. Biochemistry,2008,413(3) :429-436.
  • 5Dunoyer P,Voinnet O. The complex interplay between plant viruses and host RNA-silencing pathways[J]. Current Opinion in Plant Biology,2005,8:415-423.
  • 6Dalmay T,Hamihon A,Rudd S,et al. An RNA-mediated RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus[J]. Cell,2000,101:543-553.
  • 7Hamilton AJ,Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants [J]. Scinece, 1999,256:950-952.
  • 8Fire A,Xu S,Montgomery MK,et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegant[J]. Nature, 1998,391:806-811.
  • 9Ahlquist P. RNA-dependent RNA polymerases,viruses,and RNA silencing[ J ]. Science, 2002,296 : 1270-1273.
  • 10Vanitharani R,Chellappan P,Fauquet CM. Short interfering RNA-mediated interference of gene expression and viral DNA accumulation in cultured plant cell [J]. Proceedings of the National Academy of Sciences ,2003,100:9632-9636.

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部