期刊文献+

利用乳酸乳球菌AcmA表面展示β-1,3-1,4-葡聚糖酶 被引量:10

Functional cell surface display of endo-beta-1,3-1,4-glucanase in Lactococcus lactis using N-acetylmuraminidase as the anchoring motif
原文传递
导出
摘要 采用PCR扩增乳酸乳球菌(Lactococcus lactis)MB191菌株的全长肽聚糖水解酶基因acmA,通过C-末端融合构建了与绿色荧光基因gfp的融合基因acmA-gfp,再连接于表达载体pMG36k上后得到可组成型表达AcmA-GFP融合蛋白的重组质粒pMB137,然后将该质粒电转化导入到乳酸乳球菌AS1.2829中获得重组菌MB137。经SDS-PAGE检测,重组菌MB137可表达预期的分子量约74kD的蛋白质。Western blotting、细胞分级分离组分的荧光活性测定和特异GFP二抗标记的流式细胞仪检测证实GFP被成功锚定在重组菌细胞表面,被锚定蛋白约占总表达融合蛋白的35%。进一步通过从枯草芽胞杆菌BF7658基因组中扩增去信号肽序列的β-1,3-1,4葡聚糖酶基因gls,来取代pMB137中的gfp,得到携带融合基因acmA-gls的重组质粒pMB138,经导入到乳酸乳球菌AS1.2829后得到重组菌MB138,其全细胞β-1,3-1,4-葡聚糖水解酶的活性约为12U/mL菌液,明显高于对照菌株。 In this report, we utilized N-Acetylmuraminidase (AcmA) to develop a whole-cell catalyst of endo-beta-1, 3-1, 4- glucanase in Lactococcus lactis. The PCR-amplified full-length acmA gene from L. lactis MB191 was fused with the green fluorescent gene (gfp), followed by ligating the chimeric acmA-gfp into the Escherichia coli-L, lactis shuttle expression vector pMG36k, yielding the recombinant plasmid pMB137. SDS-PAGE analysis showed that the constitutive expression of AcmA-GFP fusion protein in the L. lactis AS1.2829 construct harboring pMB137 (named MBI37), with the predicted Mr of 74 kD. Western blotting, GFP specific fluorescence intensity assays and flow cytometry analysis confirmed that AcmA-GFP was immobilized on the outer membrane, which constituted approx. 35% of the total intracellular fusion protein. Furthermore, acmA was fused with a PCR-amplified encoding fragment of the endo-beta-1, 3-1, 4-glucanase gene (gls) from Bacillus sublitis BF7658, resulting in the recombinant plasmid pMB138. By transferring pMB138 into L. lactis AS1.2829, the derived L. lactis MB138 expressing the AcmA-GLS fusion enzyme exhibited a distinct whole-cell glucanase activity (by 12 U/mL) compared to the control strain, indicating AcmA had served as a functional anchoring motif to immobilize the heterologous enzyme on the cell surface of L. lactis.
出处 《生物工程学报》 CAS CSCD 北大核心 2009年第1期89-94,共6页 Chinese Journal of Biotechnology
基金 国家自然科学基金(Nos.30670054 30370026)资助~~
关键词 细胞表面展示 N-乙酰胞壁质酶 葡聚糖酶 全细胞催化剂 cell surface display, N-Acetylmuraminidase, endo-beta-1, 3-1, 4-glucanase, whole-cell catalyst
  • 相关文献

参考文献19

  • 1Buist G, Karsens H, Nauta A, et al. Autolysis of Lactococcus lactis caused by induced overproduction of its major autolysin, AcmA. Appl Environ Microbiol, 1997, 63(7): 2722-2728.
  • 2Buist G, Kok J, Leenhouts KJ, et al. Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation. J Bacteriol, 1995, 177: 1554-1563.
  • 3Leenhouts K, Buist G, Kok J. Anchoring of proteins to lactic acid bacteria. Antonie van Leeuwenhoek, 1999, 76: 367-376.
  • 4Ramasamy R, Yasawardena S, Zomer A, et al. Immunogenicity of a malaria parasite antigen displayed by Lactococcus lactis in oral immunisations. Vaccine, 2006, 24: 3900-3908.
  • 5Tarahomjoo S, Katakura Y, Satoh E, et al. Bidirectional cell-surface anchoring function of C-terminal repeat region of peptidoglycan hydrolase of Lactococcus lactis IL1403. J Biosci Bioeng, 2008, 105: 116-121.
  • 6van Roosmalen ML, Kanninga R, E1 Khattabi M, et al. Mucosal vaccine delivery of antigens tightly bound to an adjuvant particle made from food-grade bacteria. Methods, 2006, 38: 144-149.
  • 7Okano K, Zhang Q, Kimura S, et al. System using tandem repeats of the cA peptidoglycan-binding domain from Lactococcus lactis for display of both N- and C-terminal fusions on cell surfaces of lactic acid bacteria. Appl Environ Microbiol, 2008, 74: 1117-1123.
  • 8Raha AR, Varma NR, Yusoff K, et al. Cell surface display system for Lactococcus lactis: a novel development for oral vaccine. Appl Microbiol Biotechnol, 2005, 68: 75-81.
  • 9Heinemann U, Ay J, Gaiser O, et al. Enzymology and folding of natural and engineered bacterial beta- glucanases studied by X-ray crystallography. Biol Chem, 1996, 377: 447-454.
  • 10Planas A. Bacterial 1,3-1,4-beta-glucanases: structure, function and protein engineering. Biochim Biophys Acta, 2000, 1543: 361-382.

同被引文献111

  • 1齐桂云,周东坡,雷红,李秀凉,平文祥,李蓉.乳酸杆菌小分子抗菌肽生物学性质的初步研究[J].中国卫生检验杂志,2006,16(2):129-130. 被引量:8
  • 2林庆斌,廖升荣,熊亚红,乐学义.超氧化物歧化酶(SOD)的研究和应用进展[J].化学世界,2006,47(6):378-381. 被引量:78
  • 3谢青梅,李少璃,陈丽,覃健萍,马静云,毕英佐,曹永长.O型口蹄疫病毒VP1基因的高效可溶表达及抗原性分析[J].农业生物技术学报,2006,14(4):526-529. 被引量:2
  • 4Morello E, Bermudez-Humaran LG, Llull D, et al. Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J Mol Microbiol Biotechnol, 2008, 14: 48-58.
  • 5Bierbaum G, Sahl HG. Lantibiotics: mode of action, biosynthesis and bioengineering. Curr Pharm Biotechnol, 2009, 10: 2-18.
  • 6Cheigh CI, Pyun YR. Nisin biosynthesis and its properties. Biotechnol Lett, 2005, 27: 1641-1648.
  • 7Mathur S, Singh R. Anticiotic resistance in food lactic acid bacteria - a review. Int J Food Microbiol, 2005, 105: 281-295.
  • 8Lubelskia J, Rinkb R, Khusainova R, et al. Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cell Mol Life Sci, 2008, 65: 455-476.
  • 9Siragusa S, Di Cagno R, Ercolini D, et al. Taxonomic structure and monitoring of the dominant population of lactic acid bacteria during wheat flour sourdough type Ⅰ propagation using Lactobacillus sanfranciscensis starters. Appl Environ Microbiol, 2009, 75: 1099-1109.
  • 10Drouault S, Corthier G, Ehrlich SD, et al. Survival, physiology, and lysis of Lactococcus lactis in the digestive tract.Appl Environ Microbiol, 1999, 65(11): 4881-4886.

引证文献10

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部