期刊文献+

基于最小分类误差小波特征的纺织品缺陷分类方法研究 被引量:2

Fabric Defect Classification Using Minimum-classification-error Based Wavelet Features
下载PDF
导出
摘要 纺织品缺陷分类是利用计算机视觉技术检测纺织品品质的一个关键环节。提出了一种基于小波框架的纺织品缺陷分类新方法。该方法使用纺织品图像的小波框架来描述缺陷的纹理特征。在最小分类误差训练框架下,通过联合设计一个基于线性变换矩阵的特征提取器和一个分类器,来获取面向缺陷分类的小波框架特征,并最小化分类器的错误概率。该方法对包含9类纺织品缺陷的329个样本,以及328个无缺陷样本进行了分类实验评估,获得了93.1%的分类准确率,相比传统的基于小波变换的分类方法提高了27.2%。 Fabric defect classification plays an important role in computer visionbased fabric quality inspection. In this paper, a novel defect classification method based on wavelet frames is proposed. Defects of texture properties are characterized using the wavelet frames. Minimum classification error training method is used to incorporate the design of a linear transform matrixbased feature extractor and a classifier, which yields classification-oriented wavelet features and minimizes the error rate associate with the classifier. The proposed method has been evaluated on the classification of 329 defect samples containing nine classes of fabric defects, and 328 non-defect samples. A 93.1% classification accuracy has been achieved which is 27. 1% better than the traditional wavelet-based classification method.
出处 《中国图象图形学报》 CSCD 北大核心 2009年第2期309-316,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(60672120)
关键词 纺织品自动检测 纺织品缺陷分类 小波框架 最小分类误差训练 fabric automatic detection, fabric defect classification, wavelet frame, Minimum classification error training
  • 相关文献

参考文献18

  • 1Srinivasan K, Dastor P H, Radhakrishnaihan P, et al. FDAS: A knowledge-based frame detection work for analysis of defects in woven textile structures [ J ] . Journal of Textile Institute, 1992, 83(3) : 431-447. ~
  • 2Brzakovic D, Vujovic N. Designing a defect classification system: a case study [ J ]. Pattern Recognition, 1996, 29 ( 8 ) : 1401 - 1419.
  • 3Bradshaw M. The application of machine vision to the automated inspection of knitted fabrics [ J] . Mechatronics, 1995, 29 ( 8 ) : 233-243.
  • 4Tolba A S, Abu-Rezeq A N. A self-organizing feature map for automated visual inspection of textile products [ J ]. Computers in Industry, 1997, 32(3) : 319-333.
  • 5Rohrmus D. Invariant web defect detection and classification system [ A]. In:Proceedings of IEEE International Conference on CVPR [ C], Hilton Head, SC, USA,2000: 794-795.
  • 6Karayiannis Y A. Defect detection and classification on web textile fabric using muhiresolution decomposition and neural networks [ A ]. In: Proceedings of IEEE International Conference on Electronics, Circuits and Systems [ C ] , Blacksburg, Virginia, USA, 1999: 765 -768.
  • 7Unser M. Texture classification and segmentation using wavelet frames [ J ]. IEEE Transactions on Image Processing, 1995, 4 (11 ) : 1549-1560.
  • 8Katagiri S, Juang B H, Lee C H. Pattern recognition using a family of design algorithms based upon the generalized probabilistic descent method [ J ]. Proceedings of the IEEE, 1998, 86 ( 11 ) : 2345-2373.
  • 9Cvetkovic Z, Vetterli M. Oversampled filter banks[ J]. IEEE Transactions on Signal Processing, 1998, 45 ( 5 ) : 1245-1255.
  • 10Juang B H, Katagiri S. Discriminant learning for minimum error classification[ J ] . IEEE Transactions on Signal Processing, 1992, 40(12) : 3043-3054.

同被引文献14

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部