期刊文献+

基于柔性免疫神经树的模拟电路故障诊断方法 被引量:1

A Flexible Immune Neural Tree Based Analog Circuits Fault Diagnosis Approach
下载PDF
导出
摘要 模拟电路的非线性特性、连续性和元器件的容差等因素给故障的建模分析造成了诸多不确定因素,因此其智能故障诊断方法的研究至关重要。柔性神经树是一种采用树形结构和一组运算符集合构成的新型神经网络,与传统神经网络相比具有更加灵活的自动优化能力。本文将人工免疫机理融入柔性神经树,提出了一种基于柔性免疫神经树的模拟电路故障诊断方法。通过对一种典型模拟电路的故障诊断仿真试验,证明了该方法的有效性和可行性。 Nonlinearity, continuity and tolerance of components cause many uncertainties to the modeling and analysis of analog circuits fault, so its intelligent fault diagnosis is very important. Flexible neural tree (FNT) is a new neural network, which is constructed by a structured tree and a set of computation symbols, and which flexible can automatically devise an artificial neural network. This paper proposes a flexible immune neural tree based analog circuits fault diagnosis approach, whose performance and effectiveness are evaluated with a typical analog circuit.
出处 《山东科学》 CAS 2009年第1期35-39,共5页 Shandong Science
关键词 模拟电路 故障诊断 人工免疫系统 神经树 analog circuits fault diagnosis artificial immune system neural trees
  • 相关文献

参考文献8

  • 1辛秀华,杨宣访,卜乐平.现代模拟电路故障诊断方法综述[J].自动化与仪器仪表,2005(2):1-4. 被引量:14
  • 2HUNT H, SBARBARO D, ZBIKOWISKI R. Neural Networks for Control System - A Survey[ J ]. Automatica, 1992, 28 (6) : 1083 - 1112.
  • 3CHEN Y, YANG B,DONG J. Nonlinear System Modeling via Optimal Design of Neural Trees[J]. Int J of Neural Systems, 2004,8(2) : 125- 137.
  • 4CHEN Y,YANG B, DONG J,ABRAHAM A. Tune-Series Forecasting using Flexible Neural Tree Model[J]. Irtformation Science, 2005, 174(3/4) : 219 - 235.
  • 5AOKIA R, TORRES G L,SOUZA L E D. Knowledge' s Acquisition for AI Hanning of Restoration of Substations Using Functional Modeling [ C ]//ISAP'99. Brazil: Rio de Janeiro, 1999:191 - 195.
  • 6AMINIAN F,AMINIAN M. Neural Network Based Analog Circuit fault Diagnosis Using Wavelet Transform as Preprocessor [J]. IEEE Transactions on Circuits and SystemsⅡ :Analog and Digit Signal Processing,2000 , 47(2) :151 - 156.
  • 7贾光峰,任爱华,吴强,陈月辉.基于多表达式编程的汇率预测的研究[J].济南大学学报(自然科学版),2008,22(1):77-80. 被引量:6
  • 8PETR M,ADRIEL L, MAREKT R, LOREN W S. Immune Programming [J]. Information Sciences,2006,176:972- 1002.

二级参考文献25

  • 1王飚舵,朱衡君,余祖俊,刘维强.基于专家系统和神经网络的机车电路故障诊断系统研究[J].北方交通大学学报,1996,20(4):495-501. 被引量:14
  • 2吴鹏,刘振,陈月辉.基于神经树的时间序列预测[J].山东科学,2007,20(1):59-64. 被引量:4
  • 3AokiA R, Torres G L, Souza L E D. Knowledge's Acquisition for AI Planning of Restoration of Substations Using Functional Modeling. In:ISAP'99,Rio de Janeiro(Brazil), 1999:191 ~ 195.
  • 4杨叔子.基于知识的故障诊断技术[M].北京:清华大学出版社,1993..
  • 5Licmg jing et. al. Using Neural Networks and Fuzzy Theory in Failure Diagnosis Expert system. ICTD'95 199:27 ~ 30.
  • 6Zhao Z. Y. Introduction to fuzzy theory and neural networks and their application. Tsinghua University Press, 1996:165 ~ 169.
  • 7Insfran A H D, Silva A P A S , Torres G L. Fault Diagnosis Using Fuzzy Sets. ISAP' 99, Rio de Janeiro(Brazil), 1999: 280 ~ 284.
  • 8Muid M, George V. Automated fault detection and identification using a fuzzy - wavelet analysis technique. IEEE Proc of Autotestcon,1995:169 ~ 175.
  • 9Zhao Z, Gu X. Fault detection based on wavelet neural network.Proc of 14thIFAC World Congress. Beijing, 1999:145 ~ 150.
  • 10Luo R. C, Key M. G. Multi - sensor Integration and Fusion in Intelligent systems. IEEE Transaction on systems, Man and cybernetics,1989,19(5) ;901 ~ 931.

共引文献18

同被引文献6

  • 1吴鹏,刘振,陈月辉.基于神经树的时间序列预测[J].山东科学,2007,20(1):59-64. 被引量:4
  • 2Chen Y,Yang B,Dong J.Nonlinear SystemMedeling via Optimal Design of Neural Trees[J].Int J of Neural Systems,2004,8(2):125-137.
  • 3Chen Y,Yang B,Dong J,AbrahamA.Time-Series Forecasting using Flexible NeuralTree Model[J].Information Science,2005,174 (3/4):219-235.
  • 4Oltean M,Dum Itrescu D.Multi-expression-programming[EB/OL].[2006-10-26].www.mep.es.ubbcluj,ro.
  • 5Kennedy J,Eberhart R.Particle Swarm Optimization[J].IEEE on Networks,1995:1942-1948.
  • 6赵芳,孟凡荣.基于RBF网络的煤与瓦斯突出预测研究[J].微计算机信息,2009,25(3):29-30. 被引量:8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部