期刊文献+

支持向量机的高速线材精轧机组主电机故障智能诊断系统 被引量:2

Research on the Intelligent Fault Diagnosis System for Main Electromotor of High Speed Wire Rolling Sets Based on Support Vector Machine
下载PDF
导出
摘要 为了保证高速线材厂精轧机组主电机安全高效的运行,根据支持向量机理论(SVM),构建了某高速线材厂精轧机组主电机故障诊断系统。系统充分考虑温度、振动、电机电流及电机电压等因素对精轧机组主电机的影响,通过设计安装测点,对主电机进行监测,并运用SVM对其可能出现的故障予以预测及诊断;同时,将诊断输出值引入数据样本库,组成了智能诊断系统,提高了故障诊断结论的准确性。 In order to ensure the safety of the high speed wire rolling sets' main motor and highly efficient operation, according to the theory of support vector machine (SVM), Construction of the intelligent trouble diagnosis system for main electromotor of high speed wire rolling sets. Give full consideration to the system temperature, vibration, electricai current, electrical voltage and other factors, through design and installation the measuring point, monitoring the main motor, and use the SVM theory to predict and diagnose the possible failures, make the diagnosis output data into the database. Composed of intelligent diagnosis system, improve the accuracy of fault diagnosis.
出处 《组合机床与自动化加工技术》 北大核心 2009年第2期41-43,49,共4页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家自然科学基金项目(NO.50705069)
关键词 支持向量机 精轧机组 主电机 故障诊断系统 support vector machine rolling sets main electromotor fault diagnosis system
  • 相关文献

参考文献4

二级参考文献32

  • 1傅建中,陈子辰.精密机械热动态误差模糊神经网络建模研究[J].浙江大学学报(工学版),2004,38(6):742-746. 被引量:37
  • 2张建民,徐小力,许宝杰,王红军.面向机电系统状态监测与故障诊断的现代技术[J].北京理工大学学报,2004,24(9):751-756. 被引量:30
  • 3唐和生,薛松涛,陈镕,晋侃.序贯最小二乘支持向量机的结构系统识别[J].振动工程学报,2006,19(3):382-387. 被引量:17
  • 4Vladimir N Vapnik 张学工(译).统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 5[1]Vapnik V.The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995
  • 6[2]Cortes CVapnik V.Support Vector Networks.Machine Learning,1995;20:273~297
  • 7[3]Osuna E,Freund R,Girosi F.Training Support Vector Machines:An Application to Face Detection.In:Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition,New York:IEEE,1997:130~136
  • 8[4]Dumais S,Platt J,Heckerman D,Sahami M.Inductive Learning Algorithms and Representations for Text Categorization.In:Proceedings of the 7th International Conference on Information and Knowledge Management,1998
  • 9[5]Joachims T.Text Categorization with Support Vector Machines:Learning with Many Relevant Features.In:Proceedings of the 10th European Conference on Machine Learning,1998
  • 10[6]Courant R,Hilbert D.Methods of Mathematical Physics. Volume 1,Berlin:Springer-Verlag,1953

共引文献161

同被引文献40

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部