摘要
文章应用基于互信息最小化的独立分量分析算法(ICA算法),提出了一种用于齿轮箱故障诊断的信号预处理方法FASTICA,并应用确定性混合信号进行仿真验证。以JZQ200型号齿轮箱为例,应用FASTICA对采集的振动信号进行预处理,处理结果表明,经ICA分离后故障信息明显增强,故障诊断精度可以明显提高。
This article applies Independent component analysis (ICA) based on minimum mutual information, brings a kind of way FASTICA using in pretreatment signal of gear case and validates the results. Taking JZQ200 as an example,using the FASTICA,the results indicate that Fault information become clarity,in additional, the precision of Fault diagnosis can be improved.
出处
《组合机床与自动化加工技术》
北大核心
2009年第2期74-76,80,共4页
Modular Machine Tool & Automatic Manufacturing Technique
关键词
独立分量分析
故障诊断
混合信号
independent component analysis (ICA)
fault diagnosis