期刊文献+

判定有限域上不可约多项式及本原多项式的一种高效算法 被引量:5

An Efficient and Deterministic Algorithm to Determine Irreducible and Primitive Polynomials over Finite Fields
下载PDF
导出
摘要 提出了一个判定有限域上任一多项式是否为不可约多项式、本原多项式的高效的确定性算法。分析了多项式次数与其不可约因式之间的内在联系,给出了有限域上任意n次多项式是否为不可约多项式、本原多项式的一个充要条件。通过利用欧几里得算法,该判定仅需做O((log2n)n3)次域上乘法,属于多项式时间,易于硬件实现。为扩频通信与序列密码寻找和利用不可约多项式构造线性反馈移位寄存器提供了一种有效算法。 An efficient and deterministic method is proposed to determine whether a polynomial over finite fields is irreducible (primitive) or not. The correlation between the degree of the polynomial and its irreducible factors is analyzed, and then a sufficient and necessary condition on judging whether a polynomial of arbitrary degree n over finite fields is irreducible (primitive) or not is presented. By applying the Euclidean Algorithm, this judgment can be verified with 0((log2n) n^3) muhiplieative operations over finite fields. The proposed algorithm is accomplished in polynomial time and easy to be implemented on hardware. And it is an efficient method for construction of the Linear Feedback Shift Register for spread communication and the stream cipher to find and use irreducible polynomials.
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第1期6-9,共4页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(90604009 60503010)
关键词 有限域 不可约 本原 多项式时间算法 扩频通信 序列密码 finite fields irreducible primitive polynomial time algorithm spread spectrum communi- cation sequence cipher
  • 相关文献

参考文献10

  • 1肖国镇 梁传甲 王育民.伪随机序列及其应用[M].北京:国防工业出版社,1985..
  • 2万哲先著.代数和编码[M].北京:科学出版社,1980.285.
  • 3UDAR S, KAGARIS D. LFSR reseeding with irreducible polynomials [ C]. 13th IEEE International Online Testing Symposium, IEEE Computer Society, 2007, 293 - 297.
  • 4IMANA J L, HERMIDA R, TIRADO F. Low complexity bit-parallel multipliers based on a class of irreducible pentanomials [ J ]. IEEE Transactions on VLSI Systems, 2006, 14 (12) : 1388 - 1393.
  • 5MCELIECE R J. Finite field for computer scientists and engineers [ M ]. Boston: Kluwer Academic Publisher, 1987.
  • 6SHPARLINSKI I. Finding irreducible and primitive polynomials [ J]. Appl Alg Eng Comm Comp, 1993 (4): 263 - 268.
  • 7RIFA J, BORRELL J. A fast algorithm to compute irreducible and primitive polynomials in finite fields [ J ]. Math Systems Theory, 1995 (28) : 13 -20.
  • 8郭宝安,蔡长年.有限域上的不可约多项式[J].北京邮电大学学报,1994,17(1):23-26. 被引量:5
  • 9曹涵,陈恭亮.基于素性检验思想的不可约多项式判断[J].信息安全与通信保密,2006,28(3):73-74. 被引量:4
  • 10王泽辉,方小洵.F_p上不可约与本原多项式的高效确定算法[J].中山大学学报(自然科学版),2004,43(6):89-92. 被引量:3

二级参考文献7

共引文献92

同被引文献34

  • 1王泽辉,方小洵.F_p上不可约与本原多项式的高效确定算法[J].中山大学学报(自然科学版),2004,43(6):89-92. 被引量:3
  • 2陆佩忠,沈利,邹艳,罗向阳.删除卷积码的盲识别[J].中国科学(E辑),2005,35(2):173-185. 被引量:20
  • 3曹涵,陈恭亮.基于素性检验思想的不可约多项式判断[J].信息安全与通信保密,2006,28(3):73-74. 被引量:4
  • 4索南仁欠.二元有限域上的n次不可约多项式[J].青海师范大学学报(自然科学版),2006,22(1):14-15. 被引量:1
  • 5ShuLin,Daniel J.Costello,Jr.差错控制编码[M].北京:机械工业出版社,2007.
  • 6WADE TRAPPE. Introduction to Cryptography with Coding Theory[M]. Beijing: Posts & Telecom Press, 2008.
  • 7吴迪. 直扩信号的快速同步技术研究[D]. 南京: 南京理工大学, 2009.
  • 8BERLEKAMP E R. Algebraic Coding Theory[M]. NY USA: McGraw-Hill Book Company, 1968.
  • 9HEYDTMANN A E, JENSEN J M. On the equivalence of the Berlekamp Massey and the Euclidean algorithms for decoding[J].IEEE Transactions on Information Theory.2000,46(7):2614-2624.
  • 10SAID E E. Efficient detection of truncated m-sequence using higher order statistics. Proceeding of the 20th National Radio Science Conference, Cairo, Egypt, 2003, 8: 1-9.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部