期刊文献+

入侵检测系统中的相反性综合降维模型

A Synthetic Dimension Reduction in Intrusion Detection System
下载PDF
导出
摘要 为了提高入侵检测系统的性能,提出了一种综合降维方法。首先,借用类比推理方法,为两个多维向量建立相似距离算法。然后,基于人工免疫系统和遗传算法设计了一种对正常行为样本集合和异常行为样本集合的优化算法。最后,对采集到的网络行为样本,分别计算与优化的两个行为样本集合的相似度。把这两个相似度作为纵坐标和横坐标,行为样本被映射成二维坐标平面上的点。系统根据点的位置,判定行为是否异常。 In order to improve the performance of IDS ( Intrusion Detection System), a synthetic dimension reduction method is proposed in this paper. First of all, a similarity distance algrithm between two vectors based on analogy resoning is difined. Then, an optimization method based on Artificial Immune System (AIS) and Genetic Algorithm (GA) is used to meliorate the normal-behavior-set and abnormalbehavior-set. Finaly, a new behavior sample is sniffered from network. The distances between this new behavior sample and each of the two meliorated sets are calculated. Using these two distances as ordinate and abscissa, this new behavior sample is mapped into a point in a two-dimensional coordinates plane from a multi-dimensional vector space. According to the location of this point, a behavior can be determined whether it is an intrusion or not.
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第1期133-136,140,共5页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(60563002) 北京市自然科学基金资助项目(4082027)
关键词 入侵检测 综合 降维 相似度 人工免疫 intrusion detection system synthetic dimension reduction artificial immune
  • 相关文献

参考文献13

  • 1FORREST S, PERELSON A S, ALLEN L, et al. Self- Nonself discrimination in a computer [ C ]// Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy. Los Alamitos: IEEE Computer Society Press, 1994:202-212.
  • 2KEMMERER R A, VIGNA G. Intrusion detection: a brief history and overview [ J ]. Computer, 2002, 35 (4) : 27 -30.
  • 3蒋建春,马恒太,任党恩,卿斯汉.网络安全入侵检测:研究综述[J].软件学报,2000,11(11):1460-1466. 被引量:370
  • 4SEUNG H S, LEE D D. The manifold ways of perception [ J ]. Sience,2000, 22:2268 - 2269.
  • 5PATCHA P, PARK J. Network anomaly detection with incomplete audit data [ J]. Computer Networks, 2007, 51 (5) : 3935 -3955.
  • 6FUGATE M, GATTIKER J R. Anomaly detection enhanced classification in computer intrusion detection [C] // LNCS 2388. Berlin, Heidelberg: SpringerVerlag, 2002:186 - 197.
  • 7KIM D, PARK J. Network-based intrusion detection with support vector machines [ C ] // LNCS 2662. Berlin, Heidelberg: Springer-Verlag, 2003: 747- 756.
  • 8PARK J, SHAZZAD K, KIM D. Toward modeling lightweight intrusion detection system through correlationbased hybrid featureselection [ C ] //FENG D, LIN D, YUNG M. Proceedings of the CISC. Heidelberg: Springer-Verlag, 2005 : 279 - 259.
  • 9TAYLOR C, ALVES-FOSS J. NATE: Network analysis of anomalous traffic events, a low-cost approach [C] //Proceedings of the 2001 Workshop on New Security Paradigms. New Mexico: ACM, 2001:89-96.
  • 10HORNG S, FAN P, CHOU Y, et al. A feasible intrusion detector for recognizing ⅡS attacks based on neural networks [J]. Computers & Security, 2008, 27 (3 - 4): 84-100.

二级参考文献133

  • 1戴汝为,王珏.关于智能系统的综合集成[J].科学通报,1993,38(14):1249-1256. 被引量:52
  • 2戴汝为,王珏.巨型智能系统的探讨[J].自动化学报,1993,19(6):645-655. 被引量:39
  • 3陆德源.现代免疫学[M].上海:上海科学技术出版社,1998.14-16.
  • 4学科交叉和技术应用专门小组(美).学科交叉和技术应用[R].北京:科学出版社,1994.43.
  • 5HanJiawei Kamber M 范明等译.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 6M N O Sadiku. Artificial Intelligence [ J ]. IEEE Potentials, 1989, 8(2) :35 - 39.
  • 7R J Patton, C J Lopez-Toribio, F J Uppal. Artificial intelligence approaches to fault diagnosis[ A]. IEE Colloquium on Condition Monitoring :Machinety, External Structures and Health (Ref. No. 1999/034)[ C]. London:The Institute of Electrical Eagineers, 1999.5/1 - 5/18.
  • 8R Orwig, H Chen, D Vogel, et al. A multi-agent view of strategic planning using group support systems and artificial intelligence [J]. Group Decision and Negotiation, 1997,6( 1 ) : 37 - 59.
  • 9A Christopher, Welty, G Peter, Selfridge. Artificial intelligence and software engineering: Breaking the toy mold [ J ]. Automated Software Engineering. 1997,4(3) :255 - 270.
  • 10Donald Gillies. Book review: Artificial intelligence and scientific method [ J]. Journal of Intelligent and Robotic Systems. 1998,22( 1 ) :87-95.

共引文献752

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部