期刊文献+

基于人脸局部特征和SVM的表情识别 被引量:1

A Face Expression Recognition Method Based on Face Features and Support Vector Machine
下载PDF
导出
摘要 提出了一种基于人脸局部特征的表情识别方法.首先选取人脸重要的局部特征,对得到的局部特征进行主成分分析,然后用支持向量机(SVM)设计局部特征分类器来确定测试表情图像中局部特征,同时设计支持向量机(SVM)表情分类器,确定表情图像的所属类别.对JAFFE人脸图像数据库进行仿真实验.结果表明,该方法要优于一般的基于整体特征的人脸表情识别方法. A method for face expression recognition based on face component features was proposed. Face regional component feature was first selected. The principle component analysis (PCA) coefficients were extracted as feature vectors from the face component image. Then, support vector machine (SVM) was used to design feature classification machine for distinguishing the component regions in the face image. Meanwhile, face expression classification machine was also designed to determine which person the image belongs to. Some experiments have been made on the JAFFE face expression image database. The result showed that this method was better than other methods that used the whole features.
出处 《合肥学院学报(自然科学版)》 2009年第1期24-27,31,共5页 Journal of Hefei University :Natural Sciences
关键词 表情识别 主成分分析 支持向量机 expression recognition principle component analysis support vector machines
  • 相关文献

参考文献6

二级参考文献94

共引文献90

同被引文献6

  • 1Zhao W,Chellappa R,Knshnaswamy A,"Discriminant Analysis of Principal Components for Face Recognition",Proc.of the 3rd IEEE International Conference on Automatic Face and Gesture Recognition,Nara,Japan,pp.336-341,April 1998.
  • 2Boser B E,Guyon I M,Vapnik V N."A training algorithm for optimal margin classifier",Proc.5th ACM Workshop on Computational Learning Theory,Pittsburgh,PA,pp.144-152,July 1992.
  • 3Cortes C,Vapnik V."Support vector networks",Machine Learning,20:1-25,1995.
  • 4Kumar N,Belhumeur P,Nayar S."FaceTracer:A Search Engine for Large Collections of Images with Faces",Proc.of European Conference on Computer Vision,2008.
  • 5Seiffert C,Khoshgoftaar T M,Hulse J V,Napolitano A."Resamplmg or Reweighting:A Comparison of Boosting Implementations",2008 20th IEEE International Conference on Tools with Artificial Intelligence,2008.
  • 6赵海霞,武建.浅析主成分分析方法[J].科技信息,2009(2):87-87. 被引量:29

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部