期刊文献+

血管内皮细胞生长因子激活Rac1引起肾小球内皮细胞通透性增高的机制 被引量:3

Mechanism of hyperpermeability induced by vascular endothelial growth factor in glomerular endothelial cells through Racl activation
原文传递
导出
摘要 目的探讨细胞内Racl信号激活是否在血管内皮细胞生长因子(VEGF)增加肾小球内皮细胞的通透性和导致紧密连接酪氨酸磷酸化中起作用。方法采用原代培养的大鼠肾小球内皮细胞作为实验对象。通过体外研究,检测跨内皮细胞电阻抗观察不同浓度VEGF(5和50μg/L)对内皮细胞通透性的影响。内皮细胞转染野生型Racl和显性负性Racl质粒后,采用免疫沉淀和免疫印迹等方法观察上述效应是否源自Racl信号的激活,并观察紧密连接occludin蛋白酪氨酸磷酸化状态的改变。结果高浓度的VEGF(50μg/L)刺激可引起大鼠肾小球内皮细胞单层通透性显著增高(P〈0.05),并引起肾小球内皮细胞中GTP结合的Racl和膜结合的Hacl显著增加(P〈0.01),同时紧密连接蛋白occludin的酪氨酸磷酸化也增加(P〈0.05)。用Racl显性负性突变体转染肾小球内皮细胞能显著减弱VEGF对occludin蛋白酪氨酸磷酸化和内皮细胞通透性的影响(P〈0.05)。结论高浓度的VEGF可导致肾小球内皮细胞通透性增高,其与紧密连接蛋白occludin的酪氨酸磷酸化相关,这一作用需要Racl信号途径的激活。糖尿病中增高的VEGF可能通过Racl激活-occludin磷酸化导致肾小球内皮通透性增高,这可能是糖尿病肾病的发病机制之一。 Objective To investigate if Racl GTPase activation plays an important role in hyperpermeability and tyrosine phosphorylation of tight junction induced by vascular endothelial growth factor (VEGF) in glomerular endothelial cells (GEnCs). Methods Primary cultured rat endothelial cells were used as experimental model. The effect of VEGF at different concentrations (5 or 50 μg/L) on endothelial permeability was investigated by transendothelial electrical resistance (TEER). The permeability of GEnCs transfected with wild type Racl (wtRacl) or dominant negative Racl (N17Rac1) was also detected. Immune precipitation and immune blotting were used to detect the tyrosine phosphor-occludin in GEnCs. Results VEGF at high concentration (50 μg/L) induced hyperpermeability in GEnCs (P〈0.05). At the same time, GTP-binding and membrane- bound Racl GTPase significantly increased(P〈0.01)in GEnCs. Tyrosine phosphor-occludin was also increased (P〈0.05) under VEGF stimulation. However, transfection of GEnCs with N17Racl dramatically attenuated the effect of VEGF on tyrosine phospho-occludin and endothelial cell permeability. Conclusions Increased VEGF can induce hyperpermeability in glomerular endothelial cells, which is related to occludin tyrosine phosphorylation through Racl activation. It provides a framework for understanding the role of VEGF-induced Racl-phospho-occludin pathway in the integrity of barrier function in the diabetic milieu.
出处 《中华肾脏病杂志》 CAS CSCD 北大核心 2009年第2期111-115,共5页 Chinese Journal of Nephrology
基金 基金项目:国家自然科学基金(30771011) 广东省自然科学基金博士启动基金(06300757)
关键词 内皮生长因子 RACL GTP结合蛋白质 紧密连接部 内皮细胞 通透性 Endothelial growth factors Racl GTP-binding protein Tight junctions Endothelial cells Permeability
  • 相关文献

参考文献19

  • 1Houek KA, Ferrara N, Winer J, et al. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol, 1991, 5: 1806-1814.
  • 2Neufeld G, Cohen T, Gengrinovitch S, et al. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J, 1999, 13: 9-22.
  • 3Cooper ME, Vranes D, Youssef S, et al. Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes. Diabetes, 1999, 48: 2229-2239.
  • 4Cha DR, Kang YS, Han SY, et al. Vascular endothelial growth factor is increased during early stage of diabetic nephropathy in type Ⅱ diabetic rats. J Endocrinol, 2004, 183: 183-194.
  • 5Balda MS, Matter K. The tight junction protein ZO-1 and an interacting transcription factor regulate ErbB-2 expression. EMBO J, 2000, 19: 2024-2033.
  • 6Li D, Mrsny RJ. Oncogenic Raf-1 Disrupts Epithelial Tight Junctions via Downregulation of Occludin. J Cell Biol, 2000, 148: 791-800.
  • 7Wong V. Phosphorylation of occludin correlates with occludin localization and function at the tight junction. Am J Physiol Cell Physiol, 1997, 273: C1859-C1867.
  • 8Bazzoni G, Dejana E. Endothelial Cell-to-Cell Junctions: Molecular Organization and Role in Vascular Homeostasis. Physiol Rev, 2004, 84: 869-901.
  • 9Bruewer M, Hopkins AM, Hobert ME, et al. RhoA, Racl, and Cdc42 exert distinct effects on epithelial barrier via selective structural and biochemical modulation of junctional proteins and F-actin. Am J Physiol Cell Physiol, 2004, 287: C327-C335.
  • 10Zeng L, Xu H, Chew TL, et al. HMG CoA reductase inhibition modulates VEGF-induced endothelial cell hyperpermeability by preventing RhoA activation and myosin regulatory light chain phosphorylation. FASEB J, 2005, 19: 1845-1847.

二级参考文献22

  • 1刘维萍,洪权,陈香美,谢院生,张承英,李建军,吴镝.间隙连接蛋白43表达改变对肾小管上皮细胞转分化的影响[J].中华肾脏病杂志,2007,23(5):312-317. 被引量:9
  • 2Mishima A, Suzuki A, Enaka M, et al. Over-expression of PAR -3 suppresses contact -mediated inhibition of cell migration in MDCK cells. Genes Cells, 2002, 7:581-596.
  • 3Nishimura T, Yamaguchi T, Kato K, et al. PAR-6-PAR-3 mediates Cdc42-induced Rac activation through the Rac GEFs STEF/Tiaml. Nat Cell Biol, 2005, 7:270-277.
  • 4Komuro A, Imamura T, Saitoh M, et al. Negative regulation of transforming growth factor-beta (TGF-beta) signaling by WW domain-containing protein 1 (WWP1). Oncogene, 2004, 23:6914-6923.
  • 5Gopalakrishnan S, Hallett MA, Atkinson SJ, et al. aPKC- PAR complex dysfunction and tight junction disassembly in renal epithelial cells during ATP depletion. Am J Physiol Cell Physiol, 2007, 292:C1094-C1102.
  • 6Rastaldi MP, Ferrario F, Giardino L, et al. Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies. Kidney Int, 2002, 62:137-146.
  • 7Liu Y . Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol, 2004, 15:1-12.
  • 8Yang J, Liu Y. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol, 2001, 159:1465-1475.
  • 9Ozdamar B, Bose R, Barrios-Rodiles M, et al. Regulation of the polarity protein par6 by TGFbeta receptors controls epithelial cell plasticity. Science, 2005, 307 (5715):1603- 1609.
  • 10Thiery JP, Huang R.Linking epithelial-mesenchymal transition to the well-known polarity protein Par6. Dev Cell, 2005, 8: 456-458.

共引文献4

同被引文献68

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部