期刊文献+

基于数值模拟的AZ31心形件超塑气胀成形规律分析

Forming Laws Analysis of Superplastic Bulging Process for AZ31 Magnesium Heart-shaped Part Based on Numerical Simulation
下载PDF
导出
摘要 采用有限元分析软件MSC.MARC,设计了20组参数组合,对AZ31镁合金心形件在不同成形温度和应变速率下的恒应变速率超塑气胀成形进行了模拟分析;同时对相同温度下不同应变速率的胀形模型和相同应变速率下不同温度的胀形模型的壁厚分布做了进一步分析,对比得到温度和应变速率对胀形件的影响规律,并对成形过程中可能出现的缺陷位置做了预测。结果表明:在温度340℃,应变速率5×10-3s-1组合下,胀形件最小壁厚具有最大值。 Using the finite element analysis software MSC.MARC, the numerical simulation of constant strain rate superplastic bulging under different temperature and strain rate of AZ31 magnesium alloy heart-shaped part was analyzed based on 20 groups of simulation parameters. Meanwhile the thickness distributions of the bulging parts under different strain rate and same temperature, different temperature and same strain rate were analyzed, the influence laws of temperature and strain rate on the bulging parts were gained, and the potential risky points in the bulging process were predicted too. The results show that the peak of minimum wall thickness in the bulging parts was obtained when the temperature and strain rate are 340℃, 5×10^-3 s^-1 respectively.
出处 《热加工工艺》 CSCD 北大核心 2009年第3期56-58,62,共4页 Hot Working Technology
基金 国家自然科学基金项目(50875067) 哈尔滨市对俄合作项目(2007AA1BE109)
关键词 AZ31镁合金 心形件 薄板 数值模拟 AZ31 magnesium alloy heart-shaped parts thin sheet numerical simulation
  • 相关文献

参考文献3

二级参考文献60

  • 1李海,刘志义,雷毅.2091铝锂合金动态再结晶诱发超塑变形中的空洞行为[J].中国有色金属学报,2001,11(z1):17-22. 被引量:8
  • 2王渠东,丁文江.镁合金及其成形技术的国内外动态与发展[J].世界科技研究与发展,2004,26(3):39-46. 被引量:106
  • 3胡亚民,夏华,孙智富.镁合金的塑性加工技术[J].锻压装备与制造技术,2004,39(5):61-66. 被引量:26
  • 4张维,郭鸿镇,周洪强,赵张龙,姚泽坤.粗晶LC4合金的超塑拉伸行为[J].热加工工艺,2005,34(2):18-20. 被引量:2
  • 5[1]Watanabe H, Mukai T. Effect of temperature and grain size on the dominant diffusion process for superplastic flow in an AZ61 magnesium alloy[J]. Acta Mater, 1999, 147(14): 3753-3758.
  • 6[2]Narayanasamy R, Sathiyanarayanan S, Ponalagusamy R. A study on barrelling in magnesium alloy solid cylinders during cold upset forming[J]. Journal of Materials Processing Technology, 2000, 101: 64-69.
  • 7[3]Narayanasamy R, Sathiyanarayanan S, Ponalagusamy R. Uniaxial tensile behaviour of ZM-21 magnesium alloy at room temperature[J]. Journal of Materials Processing Technology, 2000, 102: 56-58.
  • 8[4]Huang J C, Chuang T H. Progress on superplasticity and superplastic forming in Taiwan during 1987-1997[J]. Materials Chemistry and Physics, 1999, 57: 195-206.
  • 9[5]Bussiba A, Ben A A. Grain refinement of AZ31 and ZK60 Mg alloys-towards superplasticity studies[J]. Materials Science and Engineering A, 2001, 302: 56-62.
  • 10[6]Mabuchi M, Iwasaki H, Higashi K. Low temperature superplasticity of magnesium alloy processed by equal channel angular extrusion (ECAE) [J]. Materials Science Forum, 1997, 243-245: 547-552 .

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部