期刊文献+

液压机械补偿功率回收模型参考模糊神经网络控制 被引量:3

Model Reference Fuzzy Neural Network Control of Hydraulic Mechanical Compensation Power Recovery
下载PDF
导出
摘要 介绍了液压系统试验中机械补偿功率回收的原理,建立了压力系统的数学模型。针对机械补偿功率回收系统影响压力的非线性因素多且多为缓变的特点,为满足试验要求提出了采用模型参考的模糊神经网络,提出了该网络实现的形式,设计了模糊神经网络和误差的逼近算法,根据要求确定了参考模型等。仿真结果表明:该控制方法能有效地跟踪参考模型,改变对象参数及负载输出压力无变化,能很好地满足试验要求。 The theory of power recovery with mechanical compensation in hydraulic system test was introduced. The mechanical model of hydraulic pressure was established. According to the characteristics of mechanical compensation power recovery pressure sys- tem which has many nonlinear elements and changes slowly, model reference fuzzy neural networks was employed to satisfy the demand of experiment. The form of realizing the network was put forward, fuzzy neural network and approximate algorithm were designed. Reference model were designed according to the demand of experiment. Simulation results show that this control method can track ref- erence model efficiently. When changing the object parameter and load, the output pressure is not changed, it shows that this control method can satisfy the demand of experiment.
出处 《机床与液压》 北大核心 2009年第2期114-116,155,共4页 Machine Tool & Hydraulics
关键词 压力控制 功率回收 模型参考模糊神经网络 自适应控制 Pressure control Power recovery Model reference fuzzy neural network Self adaptive control
  • 相关文献

参考文献2

  • 1白国长,逄波,王占林,祁晓野.机械补偿液压功率回收系统研究[J].机械科学与技术,2007,26(2):213-216. 被引量:13
  • 2P. Edilberto, Teixeira, M. Luciano Neto, H. Carlos Salerno. Adaptive Control of Large Induction Motors with Highly Nonlinear Loads Using Neural Networks [ J]. 0 - 7803 - 0582 - 5/- 1992 IEEE : 1679 - 1686.

二级参考文献4

共引文献12

同被引文献19

  • 1赵静一,姚成玉.液压系统的可靠性研究进展[J].液压气动与密封,2006,26(3):50-52. 被引量:27
  • 2Duoba M, Lohse-Busch H, Bohn T. Investigating Vehicle Fuel Economy Robustness of Conventional and Hybrid Electric Vehicles [ C]. EVS 21,2004.
  • 3Sharer P, Leydier R, Rousseau A. Impact of Drive Cycle Aggressiveness and Speed on HEVs Fuel Consumption Sensitivity [ C ]. SAE Paper 2007 -01 - 0281.
  • 4Bata R, Yacoub Y, Wang W, et al. Heavy Duty Testing Cycles: Survey and Comparison[ C]. SAE Paper 942263.
  • 5Jeon S I, Jo S T, Park Y I, et al. Multi-mode Driving Control of a Parallel Hybrid Electric Vehicle Using Driving Pattern Recognition [J]. Journal of Dynamic Systems, Measurement, and Control, 2002,124.
  • 6Langari Reza, Won Jong-Seob. Intelligent Energy Management Agent for a Parallel Hybrid Vehicle-Part I: System Architecture and Design of the Driving Situation Identification Process [ C ]. IEEE Transactions on Vehicular Technology,2005,54 ( 3 ).
  • 7Ericsson E. Independent Driving Pattern Factors and Their Influence on Fuel-use and Exhaust Emission Factors [ J ]. Transportation Research Part D,2001,6.
  • 8王树青.工业过程控制工程[M].北京:化学工业出版社,2007.
  • 9孙优贤,邵惠鹤.工业过程控制技术[M].北京:化学工业出版社,2006:90-92.
  • 10尚继良,王晓燕,于玮.内模控制在锅炉燃烧系统中的应用研究[J].微计算机信息,2007,23(34):41-42. 被引量:4

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部