期刊文献+

多孔球层内沸腾现象与传热特性研究 被引量:6

Boiling Phenomenon and Heat Transfer in Bead-packed Porous Structure
下载PDF
导出
摘要 采用池式沸腾实验系统,在常压底部加热条件下分别对由直径4、6、8mm玻璃球构建的多孔结构内沸腾过程进行了可视化研究。结果表明,过冷沸腾时,加热壁面上产生孤立汽泡,小汽泡可聚合为主汽泡,主汽泡脱离频率较低,汽相以分散的小汽泡为主;饱和沸腾初期,汽泡生长变快,主汽泡体积变大,连续汽相范围广阔;主汽泡形成频率随热流密度增加而增加;膜态沸腾时,底面被汽膜包围,液相占据球层空间。球体直径越大,产生同类现象需要的热流密度越大,传热系数的极值越大。饱和沸腾存在传热强化区和抑制区。直径4、8mm玻璃球构建的多孔介质传热系数随热流密度的增加而增加,6mm多孔介质则相反。 A visual study on pool boiling behavior and phase distribution was conducted on the porous structures made of staggered glass beads at atmospheric pressure. The bead-packed structure was heated on the bottom. The investigations were carried out respectively at different glass bead diameters which were 4mm, 6mm and 8mm. The results show that during subcooled boiling, small isolated bubbles are formed on the heated surface and combine into main-bubbles, the dispersion frequency of the main-bubbles is low and the small bubbles scatter in the bead-packed porous structures. At the initial stage of saturated boiling, the bubble growth rate, the volume of main-bubbles and the range of continuous vapor phase increase. The dispersion frequency of main-bubbles increases with the increasing of heat flux. During film boiling, the heated surface is absolutely covered with vapor film and the porous structure is full of liquid. The larger the diameter of beads is, the higher heat flux is needed for the same phenomenon, and the higher maximum value of heat transfer coefficient will be. During the whole saturated boiling, and the heat transfer enhanced firstly and then weakened. Being opposite to that of the diameters of 4mm and 8mm, the heat transfer coefficient in the 6mm-bead-packed porous structure decreases with the increasing of the heat flux.
出处 《核动力工程》 EI CAS CSCD 北大核心 2009年第1期45-49,73,共6页 Nuclear Power Engineering
基金 自然科学基金(No:50476049) 空泡物理与自然循环重点实验室基金
关键词 多孔结构 沸腾 传热 汽泡 Porous Media, Boiling, Heat Transfer, Bubble
  • 相关文献

参考文献7

  • 1Singh M, Mohanty K K. Dynamic Modeling of Drainage through Three-Dimensional Porous Materials[J]. Chemical Engineering Science, 2003, 58(1): 1 - 18.
  • 2Kuzhir P, Bossis G, Bashtovoi V, et al. Flow of Magnetorheological Fluid through Porous Media[J]. European Journal of Mechanics B/Fluids, 2003, 22 (4): 331 - 343.
  • 3Georgi V Tsiklauri, Thomas E Shea, Alan E Waltar, et al. Long Life Small Nuclear Reactor Without Open-Vessel Re-Fueling[R]. PNNL- 15134, 2005.
  • 4Williams R R, Harris D K. Cross-plane and In-Plane Porous Properties Measurements of Thin Metal Felts: Applications in Heat Pipes[J]. Experimental Thermal and Fluid Science, 2003, 27(3): 227 - 235.
  • 5王峥,彭晓峰,王补宣,刘涛.多孔球层内核态沸腾过程特性的实验观察[J].工程热物理学报,2002,23(6):742-744. 被引量:9
  • 6Wang Z, Peng X F, Ochterbeck J M. Dynamic Bubble Behavior during Boiling in Bead-Packed Structures [J]. International Journal of Heat and Mass Transfer, 2004, 47(22): 4771 - 4783.
  • 7闫晓,肖泽军,黄彦平,王飞.多孔介质中流动换热特性的研究进展[J].核动力工程,2006,27(z1):77-82. 被引量:15

二级参考文献34

  • 1方晨,彭晓峰,杨震.多孔介质内两相流汽相输运分析[J].工程热物理学报,2004,25(6):1007-1009. 被引量:1
  • 2[1]Williams R R,Harris D K.Cross-plane and In-Plane Porous Properties Measurements of Thin Metal Felts:applications in Heat Pipes[J].Experimental Thermal and Fluid Science,2003,27:227 ~ 235.
  • 3[2]Singh M,Mohanty K K.Dynamic Modeling of Drainage through Three-Dimensional Porous Materials[J].Chemical Engineering Science,2003,58:1 ~ 18.
  • 4[3]Kuzhir P,Bossis G,Bashtovoi V et al.Flow of Magnetorheological Fluid through Porous Media[J].European Journal of Mechanics B/Fluids,2003,22:331 ~ 343.
  • 5[4]Benkrid K,Rode S,Midoux N.Prediction of Pressure Drop and Liquid Saturation in Trickle -Bed Reactors Operated in High Interaction Regimes[J].Chemical Engineering Science,1997,52:4021 ~ 4032.
  • 6[5]Choi E,Chakma A,Nandakumar K.A Bifurcation Study of Natural Convection in Porous Media with Internal Heat Sources:the Non-Darcy Effects[J].International Journal of Heat and Mass Transfer,1998,41(2):373 ~392.
  • 7[6]Rabadi N J,Mismar S A.Enhancing Solar Energy Collection by Using Curved Flow Technology Coupled with Flow in Porous Media:An Experimental Study[J].Solar Energy,2003,75:261 ~ 268.
  • 8[7]Izadpanah M R,Müller-Steinhagen H,Jamialahmadi M.Experimental and Theoretical Studies of Convective Heat Transfer in a Cylindrical Porous Medium[J].International Journal of Heat and Fluid Flow,1998,19:629 ~635.
  • 9[9]Seguin D,Montillet A,Comiti J.Experimental Characterization of Flow Regimes in Various Porous Media-Ⅰ:Limit of Laminar Flow Regime[J].Chemical Engineering Science,1998,53(21):3751 ~ 3761.
  • 10[10]Seguin D,Montillet A,Comiti J et al.Experimental Characterization of flow Regimes in Various Porous Microsoftedia-Ⅱ:Transition to Turbulent Regime[J].Chemical Engineering Science,1998,53(22):3897 ~3909.

共引文献22

同被引文献54

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部