期刊文献+

基于径向基函数的单级插值隐式曲面重构 被引量:2

Reconstruction of Single Level Interpolation Implicit Surfaces Based on RBF
下载PDF
导出
摘要 研究基于径向基函数单级插值隐式曲面重构问题,探讨基于标准紧支撑径向基函数和变形径向基函数插值的参数求解过程。实验结果表明,该方法能有效地构造隐式曲面,并且插值过程相当快。 Explores the problem of implicit surfaces reconstruction based on radial basis function single level interpolation, and explores the solving process of interpolation parameters based on CSRBF and deformation RBF. The experimental results show the approach is efficient in implicit surfaces reconstruction, and the interpolation process is fairly quickly.
作者 罗才华 周燕
出处 《现代计算机》 2009年第1期43-45,69,共4页 Modern Computer
关键词 径向基函数(RBF) 隐式曲面 插值 紧支撑径向基函数 Radial Basis Function(RBF) Implicit Surfaces Interpolation Compactly Supported RadialBasis Function
  • 相关文献

参考文献8

  • 1G.Martheon. Splines and Kriging: Their Formal Equivalence in down to Earth Statistics[J]. Merriam D,ed.Solutions Looking for Geological Patterns[C]. Syracuse Univ. Geology Contribution, 1981 (8):77-97.
  • 2R.L.Hardy. Muhiquadric Equations of Topography and Other Irregular Surfaces [J]. Journal of Geophysical Research, 1971(176):1905-1915.
  • 3J.Duchon. Splines Minimizing Rotation-Invariant SemiNorms in Sobolev Spaces[J]. Berlin:Springer-Verlag, 1977: 85-100.
  • 4H. Q. Dinh, G. Turk, and G. Slabaugh. Reconstructing Surfaces by Volumetric Regularization Using Radial Basis Functions [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002:1358-1371.
  • 5Y. Ohtake, A. Belyaev, H. P. Seidel.3D Scattered Data Interpolation and Approximation with Multilevel Compactly Supported RBFs[J]. Graphical Models, 2005, (67):150-165.
  • 6B. S. Morse, T. S. Yoo, P. Rheingans et al. Interpolating Implicit Surfaces from Scattered Surface Data Using Compactly Supported Radial Basis Functions[J]. Shape Modeling and Applications, SMI 2001 International Conference, 2001: 89-98.
  • 7W. H. Press, S. A. Teukolsky, W. T. Vetterling et al. Numerical Recipes in C: The Art of Scientific Computing[J]. Cambridge: Cambridge University Press, 1993.
  • 8H. Wendland. Piecewise Polynomial, Positive Definite and Compactly Supported Radial Basis Functions of Minimal Degree[J]. Advances in Computational Mathematics, 1995, 4:389-396.

同被引文献22

  • 1吴杭彬,刘春.三维激光扫描点云数据的空间压缩[J].遥感信息,2006,28(2):22-24. 被引量:25
  • 2Bendse M P,Sigmund O.Topology optimization:theory,methods,and applications[M].New York:Springer,2003
  • 3Osher S,Sethian J A.Front propagating with curvature-dependent speed:algorithms based on Hamilton-Jacobiformulations[J].Journal of Computational Physics,1988,79(1):12 49
  • 4Sethian J A,Wiegmann A.Structural boundary design vialevel set and immersed interface methods[J].Journal ofComputational Physics,2000,163(2):489 528
  • 5Wang M Y,Wang X M,Guo D M.A level set method forstructural topology optimization[J].Computer Methods inApplied Mechanics and Engineering,2003,192(1?2):227246
  • 6Xia Q,Wang M Y,Wang S Y,et al.Semi-Lagrangianmethod for level-set based structural topology and shapeoptimization[J].Structural and MultidisciplinaryOptimization,2006,31(6):419 429
  • 7Burger M,Hackl B,Ring W.Incorporating topologicalderivatives into level set methods[J].Journal ofComputational Physics,2004,194(1):344 362
  • 8Allaire G,Jouve F,Toader A M,et al.Structuraloptimization using sensitivity analysis and a level-set method[J].Journal of Computational Physics,2004,194(1):363393
  • 9Belytschko T,Xiao S P,Parimi C.Topology optimizationswith implicitly functions and regularization[J].InternationalJournal for Numerical Methods in Engineering,2003,57(8):1177 1196
  • 10Wang S Y,Wang M Y.Radial basis functions and level setmethod for structural topology optimization[J].InternationalJournal for Numerical Methods in Engineering,2006,65(12):2060 2090

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部