期刊文献+

基于Granger因果性的功能磁共振成像对内侧颞叶癫痫活动的研究 被引量:4

Functional Magnetic Resonance Imaging Study on Medial Temporal Lobe Epileptic Activities using Granger Causality
下载PDF
导出
摘要 在内侧颞叶癫痫(mTLE)中,内侧颞叶与皮层及皮层下结构参与了癫痫活动的起源与传播。基于Granger因果性(GC)检验方法,对脑电联合功能磁共振(EEG-fMRI)数据进行分析,研究内侧颞叶在mTLE中的作用。以内侧颞叶激活区域为参考区域,计算参考区域与大脑其余每个体素点之间的Granger因果关系,并映射到全脑,形成Granger因果图(GCM)。结果表明,内侧颞叶将癫痫活动传播到外侧颞叶、额叶、顶叶及丘脑等区域,同时受到脑岛、壳核以及丘脑等区域脑活动的影响,提示内侧颞叶在mTLE痫样发放的传播环路中具有关键作用。 The medial temporal lobe, cortex and sub cortex structure participate in the originating and propagating of the epileptic activities in medial temporal lobe epilepsy (mTLE). In this paper, the data of simultaneous electroencephalogram-functional MRI (EEG-fMRI) were analyzed and the role of medial temporal lobe in mTLE was investigated based on Granger causality. The active region of medial temporal lobe was set as the reference region. And Granger causality between the reference region and each of other voxels was calculated. The results were mapped into the whole brain and a Granger causality map (GCM) was obtained. GCM suggested that medial temporal lobe propagated the neural activity of epilepsy to the regions such as lateral temporal lobe, frontal lobe, parietal lobe, thalamus and so on, and was influenced by such structures as insula, putamen and thalamus. In conclusion, the medial temporal lobe plays a key role in the propagation of epileptic activities.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2009年第1期7-11,16,共6页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金重点项目(30470510 30080264) 江苏省博士后特别资助基金(0801033B)
关键词 内侧颞叶癫痫 Granger因果性 间期痫样发放 效应连接 medial temporal lobe epilepsy (mTLE) Granger Causality interictal epiletiform discharges effective connectivity
  • 相关文献

参考文献24

  • 1Dan CM, Krista LG. Mapping seizure pathways in the temporal lobe [J]. Epilepsia, 2008, 49(Suppl. 3) : 23 - 30.
  • 2Wieser HG. Selective amygalo-hippocampectomy: indications and follow-up [J]. Can J Neurol, 1991, 18: 617-627.
  • 3Woo ST, Eun YJ, Jee HK, et al. Cerebral perfusion changes in mesial temporal lobe epilepsy: SPM analysis of ictal and interictal SPECT [J]. Neurolmage, 2005, 24:101 - 110.
  • 4Nelissen N, Paesschen WV, Baete K, et al. Correlations of interictal FDG-PET metabolism and ictal SPECT perfusion changes in human temporal lobe epilepsy with hippocampal sclerosis [ J ]. Neurolmage, 2006, 32: 684-695.
  • 5Friston KJ. Functional and effective connectivity in neuroimaging: a synthesis [J]. Hum Brain Mapp, 1994, 2: 56-78.
  • 6Buchel C, Friston KJ. Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI [J]. Cereb Cortex, 1997, 7: 768- 778.
  • 7Friston K J, Buchel C. Attentional modulation of effective connectivity from V2 to V5/MT in humans [J]. Proc Natl Acad Sci USA, 2000, 97: 7591- 7596.
  • 8Marreiros AC, Kiebel SJ, Friston KJ. Dynamic causal modelling for fMRI: a two-state model [J]. Neuroimage, 2008, 39( 1):269- 278.
  • 9Wang Xue, Chen Yonghong, Bressler SL, et al. Granger causality between multiple interdependent neurobiologlcal time series : blockwise versus parlwise methods [ J]. International Journal of Neural Systems, 2007, 17(2) : 71 - 78.
  • 10Guo Shuixia, Seth AK, Kendriek KM, et al. Partial Granger causality-Eliminating exogenous inputs and latent variables [ J ]. Journal of Neuroscience Methods, 2008, 172 : 79 - 93.

同被引文献81

  • 1Friston K, Frith C, Frackowiak R. Time-dependent changes in effective connectivity measured with PET [ J]. Human Brain Mapping, 1993,1 ( 1 ) :69-80.
  • 2Buchel C, Friston K J. Modulation of connectivity in visual pathways by attention:cortical interactions evaluated with structural equation modelling and fMRI [ J ]. Cereb Cortex, 1997,7 (8) :768-778.
  • 3Friston K, Mechelli A, Turner R, et al. Nonlinear responses in fMRI:the balloon model,voherra kernels,and other hemodynamies [ J]. Neuroimage ,2000,12 (4) :466-477.
  • 4Goebel R, Roebroeck A, Kim D, et al. Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping [ J ]. Magnetic Resonance Imaging, 2003, 21 (10) :1251-1261.
  • 5Marreiros A, Kiebel S, Friston K. Dynamic causal modelling for fMRI : a two-state model [ J ]. Neuroimage, 2008, 39( 1 ) :269-278.
  • 6Bressler S,Tang W,Sylvester C ,et al. Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention [ J ]. Journal of Neuroscience, 2008,28 (40) : 10 056 - 10 061.
  • 7Gao Qing, Chen Hua-fu, Gong Qi-yong. Evaluation of the effective connectivity of the dominant primary motor cortex during bimanual movement using Granger causality [ J ]. Neuroscience Letters ,2008,443 ( 1 ) : 1-6.
  • 8Granger C. Investigating causal relations by econometric models and cross-spectral methods [ J ]. Econometrica, 1969,37 ( 3 ) :424-438.
  • 9Granger C. Testing for causality: a personal viewpoint [ J ]. Journal of Economic Dynamics and Control, 1980,2( 1 ) :329-352.
  • 10Geweke J. Measurement of linear dependence and feedback between multiple time series [ J ]. Journal of American Statistical Association, 1982,77:304-313.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部