期刊文献+

基于扩散张量成像技术的大脑组织核磁共振电导率重构的仿真研究 被引量:1

Brain Tissue Conductivity Reconstruction Based on Diffusion Tensor Magnetic Resonance Imaging:A Simulation Study
下载PDF
导出
摘要 将核磁共振电阻抗成像(MREIT)技术应用于人体头部大脑组织电导率重构上。采用基于径向基函数(RBF)神经网络的均质电导率重构MREIT算法,对建立在扩散张量核磁共振成像(DT-MRI)数据基础上的白质组织各向异性电导率和各向同性的灰质、脑脊液目标电导率进行重构。在五层真实形状头模型(包括头皮、颅骨、脑脊液、灰质和白质组织)上进行的仿真实验结果表明,该算法具有一定的抗噪声能力,重构的头部电导率分布图像具有较高的精确性。研究证明了MREIT技术用于头部复杂组织结构电导率重构上的合理性与可行性,在无创头部组织电导率检测领域具有潜在的应用价值。 Magnetic resonance electrical impedance tomography (MREIT) was used to reconstruct the homogeneous conductivity of the brain tissues. RBF (radius basic function)-MREIT algorithm for homogeneous conductivity reconstruction was extended to reconstruct conductivity of the anisotropic white matter based on the data from diffusion tensor magnetic resonance imaging ( DT-MRI), as well as the target conductivity of the isotropic gray matter and CSF according to the practically physical experiment measurement. Numerical simulations were performed on the five-layer realistic head model including the isotropic CSF(cerebrospinal fluid), gray matter and the anisotropic white matter. Present results showed that the conductivity reconstruction method had higher accuracy and better robustness against noise. The research was used to judge the feasibility, meaningfulness and reliability of the MREIT applied on the electrical impedance tomography of the complicated human head tissues.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2009年第1期58-64,70,共8页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(5057705) 美国国家科学基金(NSFBES-0411898) 美国国立卫生院基金(NIHR01EB00178)
关键词 核磁共振电阻抗成像 扩散张量核磁共振成像 头部组织 各向异性电导率 白质 magnetic resonance electric impedance tomography diffusion tensor magnetic resonance imaging head tissues anisotropic conductivity white matter
  • 相关文献

参考文献2

二级参考文献48

  • 1He B (ed). Neural Engineering. USA: Kluwer Academic Publishers, 2005.
  • 2Woo E J, Lee SY, Mtm CW. Impedance tomography using internal current density distribution measured by Nuclear Magnetic Resonance. SPIE, 1994,2299:377~385.
  • 3Birgal O, Eyüboglu BM, Ider YZ. Current constrainted voltage scaled reconstruction (CCSVR) algorithm for MR-EIT and its performance with different probing current patterns.Phys Med Biol, 2003,48:653~671.
  • 4Birgül O, Eyüboglu BM, Ider YZ. New technique for high resolution absolute conductivity imaging using magnetic resonance-electrical impedance tomography (MR-EIT). Proc of SPIE International Symposium on Medical Imaging, 2001,880~888.
  • 5Khang HS, Lee BI, Oh SH, Woo E J, Lee SY, Cho MH,Kwon O, Yoon JR, Seo JK. J-substitution algorithm in magnetic resonance electrical impedance tomography (MREIT):phantom experiments for static resistivity images. IEEE Trans Med Imaging, 2002,21:695-702.
  • 6Kwon O, Lee JY, Yoon JR. Equipotential line method for magnetic resonance electrical impedance tomography (MREIT). Inverse Problems, 2002,18:1089~1100.
  • 7Ozdemir MS, Eyüboglu BM, Ozbek O. Equipotential projection-based magnetic resonance electrical impedance tomography and experimental realization. Phys Med Biol,2004,49:4765~4783.
  • 8Seo JK, Yoon JR, Woo E J, Kwon O. Reconstruction of conductivity and current density imaging using only one component of magnetic field measurements. IEEE Trans Biomed Eng, 2003,50(9): 1121 ~ 1124.
  • 9Oh SH, Lee BI, Woo E J, Lee SY, Cho MH, Kwon O, Seo JK. Conductivity and current density image reconstruction using harmonic Bz algorithm in magnetic resonance electrical impedance tomography. Phys Med Biol, 2003,48:3101~3116.
  • 10Oh SH, Lee BI, Woo E J, Lee SY Kim TS, Kwon O, Seo JK. Electrical conductivity images of biological tissue phantom in MREIT. Physiol Meas, 2005,26:S279~S288.

共引文献6

同被引文献15

  • 1Daniel Gullmar, Jens Haueisen, Michael Eiseh, et al. Influ- ence of anisotropy conductivity on EEG source reconstruction : investigations in a rabbit model [ J ]. IEEE Transactions On Biomedical Engineering, 2006, 53(9): 1841-1850.
  • 2Haueisen J, Tuch DS, Ramon C, et al. The influence of brain tissue anisotropy on human EEG and MEG[J]. NeuroImage, 2002. 15(1), 159-166.
  • 3Basser PJ, Mattiello J, Le Bihan D. MR Diffusion tensor spectroscopy and imaging[ J]. Biophysical Journal, 1994, 66 ( 1 ) : 259-267.
  • 4Tuch DS,Wedeen VJ, Dale AM, et al. Conductivity mapping of biological tissue using diffusion MRI [ J ]. Ann N Y Acad Sci, 1999, 888: 314-316.
  • 5Tuch DS,Wedeen V J, Dale AM, George JS, Belliveau JW. Conductivity tensor mapping of the human brain using diffu- sion tensor MR! [ J ]. Proc Nat Acad Sci USA, 2001, 98 (20) : 11697-11701.
  • 6Wolters CH, Anwander A, Tricoche X, et al. Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: A simulation and visualization study using high-resolution finite element modeling [ J ]. NeuroImage, 2006, 30 ( 3 ) : 813-826.
  • 7Wang Kun,Zhu S, Mueller BA, et al. A new method to de- rive white matter conductivity from diffusion tensor MRI [ J ]. IEEE Trans Biomed Eng, 2008. 55 (10) : 2418-2416.
  • 8Voronel A, Veliyulin E, Sh V. Machavariani. Fractional stokes-einstein law for Ionic transport in liquids[ J]. Physical Review Letters, 1993, 80(12) : 2630-2633.
  • 9Xinying Lu. Application of the Nemst-Einstein equation to concrete[ J]. Cement and Concrete Research, 1997, 27 (2) : 293 -302.
  • 10Denis Le Bihan,Jean-Francois Mangin, Cyril Poupon, et al. Diffusion tensor imaging: concepts and applications [ J ]. Jour- nal of Magnetic Resonance Imaging, 2001, 13: 534-546.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部