期刊文献+

基于连续本构模型的泡沫铝弹塑性断裂问题无网格法分析

Element-free method for elasto-plastic fracture analysis of aluminum foam by a continuum constitutive model
下载PDF
导出
摘要 应用无网格伽辽金法对单轴远场拉应力加载下泡沫铝弹塑性断裂问题进行了分析.首先,基于连续本构模型,将泡沫铝考虑成塑性可压缩材料,并通过引入Weibull分布,建立了宏观尺度上的泡沫铝本构关系.其次,在无网格伽辽金法的基础上,采用应力应变增量形式表征材料的弹塑性本构关系,用罚函数法施加本质边界条件,并考虑裂纹区的不连续性,用Newton-Raphson增量迭代实现非线性分析.最后通过算例讨论了概率参数对本构关系的影响,及泡沫铝相对密度与J积分值的变化规律.算例分析表明Weibull分布中的尺度参数对泡沫铝的宏观力学性质和断裂参数J积分有较大影响,而形状参数影响较小. Element-free Galerkin (EFG) method is applied to solve the elasto-plastic fracture problems of aluminum foams under uniaxial tensile load. Firstly, a continuum constitutive model is taken into account for the plastic compressibility of aluminum foams. The Weibull statistical analysis is used to represent microscopic heterogeneity. Then, the increments of stress and strain are used to characterize the elasto-plastic constitutive relationship on the basis of EFG method with penalty function method. Considering the discontinuity of crack, Newton-Raphson iteration method is used in computation. Lastly, several examples are given to show the influence of parameter on curve of stress-strain and the relation of values of J-integral versus relative density. The numerical analysis for aluminum foams shows that the influence of the scale parameter of Weibull distribution upon macroscopic mechanical properties and fracture parameter J-integral is significant, while the shape parameter is not obvious.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2009年第1期8-12,共5页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(10672017) 国家“九七三”重大基础研究计划资助项目(2006CB601205)
关键词 泡沫铝 无网格伽辽金法 连续本构模型 断裂 韦伯分布 J积分 aluminum foams element-free Galerkin method continuum constitutive model fracture Weibull distributions J-integral
  • 相关文献

参考文献10

  • 1GIBSON L J, ASHBY M F. Cellular Solids: Structures and Propertles..2nd ed. [M]. Cambridge: Cambridge University Press, 1997.
  • 2BLAZY J S, MARIE-LOUISE A, FOREST S, et al. Deformation and fracture of aluminium foams under proportional and non proportional multi-axial loading: statistical analysis and size effect [J]. International Journal of Mechanical Sciences, 2004, 46(2) : 217-244.
  • 3GUO Rui-ping, MAI Y W, FAN Tian-you, et al. Plane stress crack growing steadily in metal foams [J]. Materials Science and Engineering A, 2004, 381(1-2) :292-298.
  • 4CHENC, FLECKNA, LUTJ. The mode Icrack growth resistance of metallic foams [J]. Journal of the Mechanics and Physics of Solids, 2001, 49(2): 231-259.
  • 5LI S, LIU W K. Meshfree and particle methods and their applications [J]. Applied Mechanics Reviews. 2002, 55(1):1-34.
  • 6BELYTSCHKO T, FLEMING M. Smoothing enrichment and contact in the element-free Galerkin method [J]. Computers and Structures, 1999, 71(2) : 173-195.
  • 7RAO B N, RAHMAN S. An efficient meshless method for fracture analysis of cracks [J]. Computational Mechanics, 2000, 26 (4) : 398-408.
  • 8TRIANTAFILLOU T C, GIBSON L J. Constitutive modeling of elastic-plastic open-cell foams EJ]. Journal of Engineering Mechanics, 1990, 116: 2772-2778.
  • 9王曦,虞吉林.泡沫铝的单向力学行为[J].实验力学,2001,16(4):438-443. 被引量:25
  • 10龙述尧,陈莘莘.弹塑性力学问题的无单元伽辽金法[J].工程力学,2003,20(2):66-70. 被引量:23

二级参考文献9

  • 1聂武 孙丽萍.船舶计算结构力学[M].哈尔滨:哈尔滨工程大学出版社,1999..
  • 2Nayroles B, Touzot G, Villon P. Generalizing the finite element method. Diffuse approximation and Diffuse elements [J]. Computer Mech., 1992, 10:307-318.
  • 3Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods[J]. Int. J. for Num. Methods in Eng., 1994, 37:229-256.
  • 4Lu Y Y, Belytschko T, Gu L. A new implementation of the element-free Galerkin method[J]. Comput methods Appl. Mech. Engrg, 1994, 113: 397-414.
  • 5Kryl P, Belytschko T. Analysis of thin plates by the element-free Galerkin method[J]. Comput Mech, 1995,17: 26-35.
  • 6Sugimura Y,Acta Mater,1997年,45卷,5245页
  • 7Prakash O,Mater Sci Eng.A,1995年,199卷,195页
  • 8周维垣,寇晓东.无单元法及其工程应用[J].力学学报,1998,30(2):193-202. 被引量:99
  • 9周维垣,寇晓东.无单元法及其在岩土工程中的应用[J].岩土工程学报,1998,20(1):5-9. 被引量:77

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部