期刊文献+

考虑两相影响的PEMFC内部传递过程三维模拟 被引量:3

Three-dimensional simulation of transport processes in PEMFC considering two-phase effects
下载PDF
导出
摘要 针对常规流场的质子交换膜燃料电池提出了三维非等温数学模型,在考虑水相变的情况下对电池内部传热传质和电化学反应进行了数值模拟,分析了多孔介质内水蒸气凝结和液态水分布对传递过程和电池性能的影响,并同单相模拟结果进行了对比.计算表明,水蒸气的凝结在降低多孔介质渗透性的同时,加强了反应气体向反应界面的传递;两种模型在高电流密度下阳极均缺水严重,需要更好的水管理;单相模型由于忽略了水蒸气的凝结,实际低估了电池的欧姆极化. A three-dimensional non-isothermal mathematical model is developed for proton exchange membrane fuel cell (PEMFC) with conventional flow field. The heat and mass transfer and the electrochemical reactions are simulated considering phase change of water. The effects of water vapor condensation and liquid water distribution in porous media on transport processes and cell performance are analyzed, and the results are compared with those of singlephase model. The calculation indicates that the condensation of water vapor enhances the transport of reactant gases to reaction interfaces while decreasing the permeability of porous media. There is a lack of water in anode side at high output current densities for the two models and this requires more effective water management. And the singlephase model underestimates the actual ohmic polarization for neglecting the condensation of water vapor.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2009年第1期55-59,共5页 Journal of Dalian University of Technology
关键词 质子交换膜燃料电池 相变 数值模拟 传热传质 PEMFC phase change numerical simulation heat and mass transfer
  • 相关文献

参考文献11

  • 1BERNARDI D M, VERBRUGGE M W. Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte [J]. AIChE Journal, 1992, 37(8) : 1151-1163.
  • 2BERNARDI D M, VERBRUGGE M W. A mathematical model of the solid-polymer-electrolyte fuel cell [J]. Journal of the Electrochemical Society, 1992, 139(9) : 2477-2491.
  • 3SPRINGER T EO ZAWODZINSKI T A, GOTTESFELD S. Polymer electrolyte fuel cell model [J]. Journal of the Electrochemical Society, 1991, 138(8) : 2334-2341.
  • 4JIN H N, MASSOUD K. Effective diffusivity and water-saturation distribution in single-and two-layer PEMFC diffusion medium [J]. International Journal of Heat and Mass Transfer, 2003, 46: 4595-4611.
  • 5NEWMAN J. Electrochemical Systems [M]. Englewood Cliffs:Prentice-Hall, 1991.
  • 6NGUYEN T V, WHITE R E. A water and heat management model for proton-exchange-membrane fuel cells [J]. Journal of the Electrochemical Society, 1993, 140(8) :2178-2186.
  • 7BERNING T, LU D M, DJ ILALI N. Three-dimensional computational analysis of transport phenomena in a PEM fuel cell [J]. Journal of Power Sources, 2002, 106:284-294.
  • 8WANG L, HUSAR A, ZHOU T H, et al. A parametric study of PEM fuel cell performances [J]. International Journal of Hydrogen Energy, 2003, 28: 1263-1272.
  • 9LIP W, SCHAEFER L, WANG Q M, et al. Multi-gas transportation and electrochemical performance of polymer electrolyte fuel cell with complex flow ehannels [J]. Journal of Power Sources, 2003, 115:90-100.
  • 10WANG Z H, WANG C Y, CHEN K S. Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells [J]. Journal of Power Sources, 2001, 94:40-50.

同被引文献64

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部