期刊文献+

基于小波奇异性的梁结构损伤评估方法研究 被引量:2

Research on beam damage diagnosis based on wavelet singularity
下载PDF
导出
摘要 通过一个简支梁的数值模拟,根据小波奇异性检测原理,利用两种方法对梁的损伤进行诊断,提出了利用Gaus1小波进行梁结构的损伤诊断方法.首先利用Gaus1小波对转角进行小波变换,对简支梁结构的振型求一阶导数,得到转角,再确定损伤位置、损伤程度与Lipschitz指数的关系,并与利用Gaus2小波对振型直接进行小波变换的方法进行比较研究,发现第一种方法在损伤定位、模极大值线的求取方面比后者优越.所提出的Gaus1小波方法可以对实际梁结构进行有效的损伤诊断,这将为小波理论的深入研究提供一种新的思考问题思路和方法. According to the wavelet singularity theory and numerical simulation studies of beam structure, two methods of wavelet damage diagnosis are employed to analyze the damage diagnosis of beam structure based on Gausl wavelet. Firstly, the first derivative of the mode shape (rotation) is studied and gotten. Then, the continuous wavelet transform(CWT) by a Gausl wavelet is employed to deeply analyze the rotation of beam structure, the damage position and the relation between damage extent and Lipschitz exponent, and some significant results are gotten. Finally, by comparing the above-mentioned method and the methods through CWT by Gaus2 applied to the mode shape, it is found that the above-mentioned method is much better than Gaus2 method. So, the above-mentioned method can be employed to study practical beam structure damage diagnosis, which suggests the new ideas and methods for the advanced development of the wavelet theory.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2009年第1期105-109,共5页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(50678033) 国家"十一五"科技支撑计划资助项目(2006BAJ06B07-04)
关键词 损伤诊断 小波奇异性 Lipschitz指数 振型转角 Gausl小波 damage diagnosis wavelet singularity Lipschitz exponent mode shape rotation Gauslwavelet
  • 相关文献

参考文献4

二级参考文献10

  • 1秦前清 扬宗凯.实用小波分析[M].西安:西安电子科技大学出版社,1998..
  • 2程正兴.小波分析算法与应用[M].西安:西安交通大学出版社,1997..
  • 3Daubechies I.Ten lectures on wavelets[A].CBMS-NSF Series in Appl.Math.[M],Philadelphia:SIAM,1991
  • 4Mallat S, Hwang W L. Singularity detection and procession with wavelets[J].IEEE Trans. on Information Theory, 1992,38(2):617~643
  • 5Cetin A E, Ansari R. Signal recovery from wavelet transform maxima [J].IEEETrans.on Signal Processing, 1994,42(7):1845~1848
  • 6何正友,钱清泉.一种改进小波神经网络模型在电力故障信号分析中的应用[A].中国神经网络与信号处理学术会议论文集[C].1999,汕头
  • 7Daubechies I. Orthonormal bases of compactly supported wav-elets[J]. Comm. on Pure and Appl. Math. 1998,41(7):906~909
  • 8李建平,张万萍,陈廷槐,徐问之.多种小波基应用性能分析(Ⅰ)[J].重庆大学学报(自然科学版),1998,21(2):111-116. 被引量:11
  • 9郑崇伟,韦巍.基于小波分析的发电机匝间短路故障的智能诊断研究[J].浙江大学学报(自然科学版),1998,32(4):431-346. 被引量:15
  • 10李德葆,陆秋海,秦权.承弯结构的曲率模态分析[J].清华大学学报(自然科学版),2002,42(2):224-227. 被引量:83

共引文献37

同被引文献18

  • 1王贵平,鲍长春,张鹏.基于奇异值分解的低速率波形内插语音编码算法[J].电子学报,2006,34(1):135-140. 被引量:13
  • 2刘玉良,李刚,林凌,王焱.基于小波分析的光电脉搏波奇异性处理[J].信号处理,2007,23(1):64-68. 被引量:7
  • 3Figarella T, Jansen M H. Brush wear detection by continuous wavelet transform[J]. Mechanical Systems and Signal Process- ing,2007,21(3) :1212 - 1222.
  • 4Jiang Huiqin,Ma Ling, Jiang Hongyu, Rinoshika A. Application of wavelet-based singularity detection technique in automatic inspection system[ J ]. International Journal of Wavelets, Mul- tiresolution and Information Processing, 2006,4(2) : 285 - 295.
  • 5Li ChunFeng, Liner C. Wavelet-based detection of singularities in acoustic impedances from surface seismic reflection data[ J]. Geophysics, 2008,73( 1 ) : 1 - 9.
  • 6Zhong J,Ning R. Image denoising based on wavelets and multi- fractals for singularity detection[J]. IEEE Transactions on Im- age Processing, 2005,14(10) : 1435 - 1447.
  • 7Selvan S, Ramakrishnan S. SVD-based modeling for image texture classification using wavelet transformation [ J ]. IEEE Transactions on Image Processing, 2007, 16 ( 11 ):2688 -2696.
  • 8Teoh E J, Tan K C, Xiang C. Estimating the number of hidden neurons in a feedforward network using the singular value de- composition [ J ]. IEEE Transactions on Neural Networks, 2006,17(6): 1623 - 1629.
  • 9Choong M K, Levy D, Yan H. Study of microarray time series data based on forward-backward linear prediction and singular value decomposition[J]. International Journal of Data Mining and Bioinformatics,2009,3(2) : 145 - 159.
  • 10Bydder M, Du J. Noise reduction in multiple-echo data sets using singular value decomposition[J]. Magnetic Resonance Imaging,2006,24(7) :849 - 856.

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部