期刊文献+

基于QPSO算法的信道分配方法 被引量:6

Channel Assignment Based on QPSO Algorithm
原文传递
导出
摘要 由于传统的信道分配方法存在频率利用率低下和处理速度慢的缺点,为此,提出基于量子计算的PSO算法(QPSO)来快速实现信道最优化分配方法。这种优化方法利用了量子计算的并行计算能力强、全局收敛、运算速度极快等特点,主要包括初始化代表每个信道的粒子的速度和位置,根据信道分配的数学模型计算保证信道各种约束条件的适应度函数,根据量子粒子群的规律进行粒子位置更新,直至找到最佳信道分配方案等步骤。仿真结果表明其方法是行之有效的,优化效果优于基于遗传算法和PSO算法的信道分配方法。 The traditional approach to channel assignment problem has such disadvantages as the low processing speed and low efficiency for available frequency. In order to quickly realize the channel assignment optimization, an approach based on quantum -behaved particle swarm optimization(QPSO) algorithm is presented according to the advantages of quantum computation, including strong ability of parallel calculation, global convergence and fast operating speed. The main processing procedure includes initialization speed and position of particles representing status of each channel, then calculates fitness function satisfying restricting condition based on mathematic model of channel assignment, and updates the position of particle swarm on the evolutionary law of quantum-behaved particle swarm, finally finds out the best channel assignment. Simulation shows that the approach is effective, and the optimization result is superior to that of 6A and PSO algorithms.
出处 《通信技术》 2009年第2期204-206,209,共4页 Communications Technology
基金 国家自然科学基金项目(60673087) 河北省教育厅科学研究计划项目(2008315)。
关键词 移动通信 信道分配 粒子群优化 遗传算法 量子粒子群优化(QPSO) Mobile telecommunication Channel assignment Particle swarm optimization(PSO) Geneticalgorithm(GA) Quantum-behaved Particle swarm optimization (QPSO)
  • 相关文献

参考文献6

二级参考文献23

  • 1TOKUDA I, NAGASHIMA T, AIHARA K. Global bifurcation structure of chaotic neural networks and its application to traveling salesman problem [J].Neural Networks, 1997, 10(9): 1673-1690.
  • 2CHEN L, AIHARA K. Simulated annealing by a neural network model with transient chaos[J]. Neural Networks, 1995, 8 (6): 915-930.
  • 3SOLO R V, PRIDA L de La. Controlling chaos in discrete neural network [J]. Phys Lett A, 1995, 199(1): 65-69.
  • 4FREEMAN W J. Simulation of chaotic EEG patterns with a dynamic model of the olfactory system [J]. Biological Cybernetics, 1987, 56: 139-150.
  • 5YAO Y, FREEMAN W J. Model of biological pattern recognition with spatial chaotic dynamics [J].Neural Networks,1990, 3 (2) :153-170.
  • 6WOLF A, SWLFT J B, SWINNEY H L,et al. Determining Lyapunov exponents from a time series[J].Physica D,1985, 16(3):285-317.
  • 7AIHARA K, TAKABE T, TOYODA M. Chaotic neural networks[J]. Phys Lett A, 1990,144 (6-7):333-340.
  • 8ADACHI M, AIHARA K. Associative dynamics in a chaotic neural network [J]. Neural Networks, 1997,10(1): 83-98.
  • 9SHIMADA I, NAGASHIMA T. A numerical approach to ergodic problem of dissipative dynamical systems[J]. Progress of Theoretical Physics, 1979,61(6):1605-1616.
  • 10杨乐,薛谦.最优子种群实数编码的遗传算法[J].现代电子技术,2007,30(15):119-121. 被引量:4

共引文献15

同被引文献55

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部