期刊文献+

频谱分割波分复用无源光网络及色散影响 被引量:2

Spectrum-Sliced Wavelength Division Multiplexed Passive Optical Networks and Effects of Chromatic Dispersion
原文传递
导出
摘要 频谱分割是使用窄带光滤波器选择宽带光源光谱的一个切片的WDM技术,在波分复用无源光网络(WDM-PON)中采用波分复用器((MUX)进行频谱分割,能够实现光网络单元(ONU)的无色化。模型分析表明由于频谱分割的作用,使得波分复用器光通带外的频谱成分被过滤,减小了宽带光源的色散影响。在20 nm CWDM标准信道间隔下,能够以不超过1 dB的光功率代价支持155 Mb/s信号在20 km的G.652常规光纤上传输;在0.8 nm DWDM信道间隔下则能够支持2.5 Gb/s信号传输,色散引起的光功率代价低于0.5 dB。采用中心波长为1550 nm、谱宽70 nm、输出功率为—10 dBm的LED,研制了125 Mb/s速率信号直接调制的无色ONU。在信道间隔为20 nm、光纤长度为20 km的4波长WDM-PON系统上进行测试,色散等因素引起的光功率代价小于1 dB,系统光功率余量则超过5.6 dB。 Spectrum-slicing is an attractive WDM technique for realizing colorless ONUs in wavelength division multiplexed passive optical network (WDM-PON). It uses wavelength multiplexer (λMUX) as optical filters to obtain a spectral slice of light from a broadband light source (BLS) and modulates encode data onto the slice. A theoretical analysis elucidates that the effects of chromatic dispersion will reduce because the spectrum outside the bandwidth of ;tMUX will be filtered out after spectrum slicing. At the 20 nm CWDM channel spacing, 155 Mb/s per channel at distance of 20 km on a G. 625 fiber is supported with optical power penalty less than 1 dB; while at 0.8 nm DWDM channel spacing, 2.5 Gb/s per channel is supported with optical power penalty less than 0.5 dB. Direct modulation colorless ONU at 125 Mb/s is proposed and demonstrated by using LED with centre wavelength at 1550 nm, output power of -10 dB and a bandwidth of 70 nm. A four-channel WDM-PON over 20 km fiber with channel spacing of 20 nm is tested. The result shows optical power penalty caused by chromatic dispersion is less than 1 dB and optical power margin is more than 5.6 dB.
出处 《光学学报》 EI CAS CSCD 北大核心 2009年第2期312-315,共4页 Acta Optica Sinica
基金 国家自然科学基金(60672025)资助课题
关键词 光通信 波分复用无源光网络 频谱分割 无色光网络单元 色散 optical communications wavelength division multiplexed passive optical networks (WDM-PON) spectrum slicing colorless optical networks unit (ONU) chromatic dispersion
  • 相关文献

参考文献9

  • 1K. Grobe, J.-P. Elbers. PON in Adolescence: from TDMA to WDM-PON[J]. IEEE Communications Magazine, 2008, 46 (1) : 26-34.
  • 2Chang-Hee Lee, Sang Mook Lee, Ki-Man Choi et al.. WDM PON: a next generation aeeess network[C]. Proc. SPIE, 2006, 6353:63531P1-3.
  • 3C. K. Chan, L. K. Chen, C. Lin. WDM PON for next-generation optical broadband access networks[C]. OECC, 2006, 5E2-1 1-5E2-1 3.
  • 4A. Banerjee, Y. Park, F. Clarke et al.. Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review[J]. J. Optical Networking, 2005, 4(11): 737-758.
  • 5G. P. Agrawal. Fiber-Optic Communications Systems [M]. Third Edition, John Wiley & Sons, Inc. , 2002.
  • 6Shin Kaneko, Jun-ichi Kani, Katsumi Iwatsuki. Sealability of spectrum-sliced DWDM transmission and its expansion using forward error correction [J]. J. Lightwave Technology, 2006, 24(3) : 1295-1301.
  • 7G. J. Pendock, D. D. Sampson. Transmission performance of high bit rate spectrum-sliced WDM systems[J]. J. Lightwave Technology, 1996, 14(10) : 2141-2148.
  • 8K. H. Han, E. S. Son, H. Y. Choi et al.. Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed waveguide grating[J]. IEEE Photon. Technol. Lett. , 2004, 16(10): 2380-2382.
  • 9Y. S. Jang, C.-H. Lee, Y. C. Chung. Effects of crosstalk in WDM systems using spectrum-sliced light source [J]. IEEE Photon. Technol. Lett. , 1999, 11(6): 715-717.

同被引文献16

  • 1D. C. Kilper, R. Bach, D. J. Blumenthal el al.. Optical performance monitoring[J]. J. Lightwave Technol. , 2004, 22(1) : 294-304.
  • 2Shake H. Takara, S. Kawanishi, Y. Yamabayashi. Optical signal quality monitoring method based on optical sampling[J]. Electron. Lett., 1998, 34(10): 2152-2154.
  • 3S. D. Dods, T. B. Anderson. Optical performance monitoring technique using delay tap asynchronous waveform sampling [C]. OFC/NFOEC Tech. Gid., 2006, OThP5.
  • 4R. A. Kokoog, T. C. Banwell, J. W. Ganneu et al.. Automatic identification of impairments using support vector machine pattern classification on eye diagrams[J]. IEEE Photon. Technol. Lett. , 2009, 18(5) : 2398-2400.
  • 5Trung D. , Jochen Schroder, Mark Pelusi et al.. Photonic chip-based simultaneous multi impairment monitoring for phase- modulated optical signals[J]. J. Lightwave Technol. , 2010, 28(11) : 3176-3183.
  • 6I. Shake, H. Takara, S. Kawanishi. Simple measurement of eye diagram and BER using high-speed asynchronous sampling [J]. J. Lightwave Technol. , 2004, 22(5): 1296-1302.
  • 7J. A. Jargon, X. X. Wu, A. E. Willer. Optical performance monitoring using artificial neural networks trained with eyediagram parameters[J]. IEEE Photon. Technol. Lett., 2009, 21(1): 54-56.
  • 8K. Homik, M. Stinchcomber, H. White. Multilayer feed-forward networks are universal approximators[J]. Neural Netrorks, 1989, 2(5) : 359--366.
  • 9B. Niu, Y. J. Zhu, X. X. He. MCPSO.. a multiswarm cooperative particle swarm optimizer[J]. Appl. Math. Comput. , 2007, 185(2) : 1050-1062.
  • 10孙艳霞,王增会,陈增强,齐国元.混沌粒子群优化及其分析[J].系统仿真学报,2008,20(21):5920-5923. 被引量:7

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部