期刊文献+

全硅光子晶体波导中二次谐波产生及影响因素 被引量:4

Second Harmonic Generation and Effect Factors in Silica Photonic Crystal Waveguide
原文传递
导出
摘要 硅材料是半导体微细加工工艺中的常用材料,属于m3m对称点群,通常无法实现二次谐波产生,导致光子系统芯片中的非线性纰件集成困难。提出一种在硅材料中可以实现二次谐波产生光子晶体波导结构。首先给出该波导结构的组成及其基本原理,然后讨论谐波产生的计算模型和计算方法,最后给出针对10.6μm波长而设计的全硅二维光子晶体波导具体结构参数,以有限时域差分算法为基础,计算分析了谐波产生情况。研究结果表明:该结构利用光子晶体带隙边缘效应增强了硅材料的电四极极化强度从而实现二次谐波产生,在完全相位匹配条件下,当抽运波强度为1.3 MW/mm^2时,转换效率为0.2%。最后,对影响谐波转换效率的因素进行了初步分析。 Silicon is one of important semiconductor materials in micro-fabrication technology. However it belongs to m3m point group, there is no second harmonic generation (SHG) in it. This is an obstacle for the integration of nonlinear micro-structures in optical system on chip. We present the silicon waveguide structure based on photonic crystals to realize SHG and overcome the technology bottle-neck. The configuration of waveguides and the basic principle are put forward. The computation model and methods based on finite difference time domain (FDTD) are given. Finally we present a design result aimed at the wavelength of 10.6μm and analyze the SHG. The results show the enhancing electric quadrupole polarization leads to the SHG in silicon by virtue of photonic band edge effect. Under the condition of perfect phase matching, the conversion efficiency is 0. 2% at the pumping power of 1.3 MW/mm^2. At the end, effect factors of conversion efficiency are discussed briefly.
出处 《光学学报》 EI CAS CSCD 北大核心 2009年第2期506-510,共5页 Acta Optica Sinica
基金 国家自然科学基金(10805001) 安徽省教育厅自然科学研究项目(2006kj262B)资助课题
关键词 非线性光学 二次谐波产生 有限时域差分法 光子晶体波导 nonlinear optics second harmonic generation finite difference time domain photonic crystal waveguide
  • 相关文献

参考文献14

  • 1Jennifer Ouellette. Seeing the future in photonic crystals[J]. Industrial Physicist, 2001, 10 : 14- 18.
  • 2Y. R. Shen. The Principles of Nonlinear Optics [M]. New York: John Wiley & Sons, 1984. 5-15.
  • 3P. S. Persan. Nonlinear optical properties of solid: energy consideration[J]. Phys. Rev. , 1963, 130:919-923.
  • 4R. W. Terhune, P. Maker, C. M. Savage. Optical harmonic generation in calcite[J]. Phys. Rev. Lett., 1962, 8(21): 404- 406.
  • 5方宏,娄淑琴,郭铁英,简水生.一种新结构高双折射光子晶体光纤[J].光学学报,2007,27(2):202-206. 被引量:26
  • 6程同蕾,李曙光,周桂耀,侯蓝田.空芯光子晶体光纤纤芯中的功率分数及其带隙特性[J].中国激光,2007,34(2):249-254. 被引量:15
  • 7I. S. Fogel, J. M. Bendickson, M. D. Tocci et al.. Spontaneous emission and nonlineareffects in photonic bandgap materials[J]. PureAppl. Opt., 1998, 7:393-407.
  • 8M. D. Tocci, M. Scalora, M. J. Bloemer et al.. Measurement of spontaneous-emission enhancement nearthe one-dimensional photonic band edge of semiconductor heterostructures[J]. Phys. Rev. A, 1996, 53:2799-2803.
  • 9G. J. Ashwell, G. Jefferles, D. G. Hamilon et al.. Centrosymmetrie molecules for second harmonic generation[J]. Nature, 1995, 375:385-388.
  • 10Teruya Ishihara, Kazuki Koshino. Second harmonic generation due to quadrupole interaction in a photonic crystal slab: angle dependence and symmetry of the unite cell [J]. Phys. Rev. Lett. , 2003, 91:253901.

二级参考文献59

共引文献145

同被引文献47

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部