摘要
The Mt. Beigu wetland, which has undergone periodical changes in water level, lies by the Yangtze River, and its dominant plants are Phragmites communis, Phalaris arundinacea and Polygonum lapathifolium. In order to study the distribution characteristics of nitrogen and phosphorus in the ecological system of the Mt. Beigu wetland, the authors measured the contents of total nitrogen and total phosphorus in Phragmites communis, Phalaris arundinacea and Polygonum lapathifolium, and the contents of nitrogen and phosphorus in the wetland soils with different plant species. In addition the authors investigated the influence of various plants on the spatial and seasonal (spring/autumn) distributions of nitrogen and phosphorus in the wetland soil. The contents of nitrogen and phosphorus in Phalaris arundinacea are significantly higher than those of the other two plant species in the same part. Secondary pollution of phosphorus in the wetland results mainly from Phalaris arundinacea. Phragmites communis effectively carries away nitrogen and phosphorus in the wetland soil in the wet season. The capacity of Polygonum lapathifolium to remove nitrogen is lowest among the 3 species of plants. These findings offer a theoretical foundation for the selection of plant species to restore the ecological environment and for the selection of time and depth for purging silt on the riverside wetland.
The Mt. Beigu wetland, which has undergone periodical changes in water level, lies by the Yangtze River, and its dominant plants are Phragmites communis, Phalaris arundinacea and Polygonum lapathifolium. In order to study the distribution characteristics of nitrogen and phosphorus in the ecological system of the Mt. Beigu wetland, the authors measured the contents of total nitrogen and total phosphorus in Phragmites communis, Phalaris arundinacea and Polygonum lapathifolium, and the contents of nitrogen and phosphorus in the wetland soils with different plant species. In addition the authors investigated the influence of various plants on the spatial and seasonal (spring/autumn) distributions of nitrogen and phosphorus in the wetland soil. The contents of nitrogen and phosphorus in Phalaris arundinacea are significantly higher than those of the other two plant species in the same part. Secondary pollution of phosphorus in the wetland results mainly from Phalaris arundinacea. Phragmites communis effectively carries away nitrogen and phosphorus in the wetland soil in the wet season. The capacity of Polygonum lapathifolium to remove nitrogen is lowest among the 3 species of plants. These findings offer a theoretical foundation for the selection of plant species to restore the ecological environment and for the selection of time and depth for purging silt on the riverside wetland.
基金
supported by the National Foundation of Senior Talents of Jiangsu University and of National High-Tech Research and Development Plan of China (No. 2003AA601100-3)
关键词
植物群落
演替过程
竞争特性
生物理
地球化学
nitrogen
Phalaris arundinacea
phosphorus
Phragmites australis
Polygonum lapathifolium
wetland