摘要
We consider the semilinear heat equation with globally Lipschitz non-linearity involving gradient terms in a bounded domain of R^n. In this paper, we obtain explicit bounds of the cost of approximate controllability, i.e., of the minimal norm of a control needed to control the system approximately. The methods we used combine global Carleman estimates, the variational approach to approximate controllability and Schauder's fixed point theorem.
We consider the semilinear heat equation with globally Lipschitz non-linearity involving gradient terms in a bounded domain of R^n. In this paper, we obtain explicit bounds of the cost of approximate controllability, i.e., of the minimal norm of a control needed to control the system approximately. The methods we used combine global Carleman estimates, the variational approach to approximate controllability and Schauder's fixed point theorem.
基金
supported by the Natural Science Foundation of China (No.10371136,10771222)