期刊文献+

一种基于最小差异度的关联分类方法

Association Rule Classification Based on Min-discrepancy
下载PDF
导出
摘要 关联分类具有较高的分类精度和较强的扩展性,但是由于分类器是由高置信度的规则构成,因此有时会出现过拟合。因此考虑在fp-growth挖掘频繁项的基础上。计算频繁项与测试数据间的最小差异度,即分类规则与测试数据的匹配程度。将最小差异度最小的类标号赋予测试数据。实验结果表明,该算法较先前算法有较高的精确度,如CBA (Classification-Based Association),CMAR (Classification based on Multiple Association Rules),CPAR(Classification based on Predictive Association Rules)。但是不足之处是精确度提高的代价是存储频繁项的矩阵过于庞大.系统开销不小。 Associative classification has high classification accuracy and strong expansibility. However, as its high confidence, it still suffers from overfitting. So compute the min-discrepancy between frequent items and test data based on the frequent items which produced by fp-growth..Put the class label which has the minimal discrepancy to the test data. Experimental results show that CFPM has better classification accuracy in comparison with CBA,CMAR and CPAR. But the nih accuracy is at the expeme of system spending for its large motrix which used to store the frequent items.
作者 史娜 张燕平 SHI Na, ZHANG Yan-ping (Key Lab. of Intelligent Computing & Signal Processing, Anhui University, Hefei 230039, China)
出处 《电脑知识与技术》 2009年第1期177-179,共3页 Computer Knowledge and Technology
基金 安徽省自然科学基金(60675031)
关键词 频繁项 矩阵 最小差异性 匹配 分类 frequent items teatrix rain-discrepancy matching classification
  • 相关文献

参考文献2

二级参考文献20

  • 1Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[C]//Proc of the ACM-SIGMOD 1993 Int Conf on Management of Data (SIGMOD'93).Washington D C,1993:207-216.
  • 2Agrawal R,Srikant R.Fast algorithms for mining association rules[C]//Proc of the 18th Int Conf on Very Large Data Bases(VLDB'94).Santiago Chile,1994:487-499.
  • 3Han J,Pei J,Yin Y.Mining frequent patterns without candidate generation[C]//Proc of the ACM-SIGMOD 2000 Int Conf on Management of Data(SIGMOD'00).Dallas,2000:1-12.
  • 4Liu B,Hsu W,Ma Y.Integrating classification and association rule mining[C]//Proc of 1998 Int Conf on Knowledge Discovery and Data Mining(KDD' 98).New York,1998-08:80-86.
  • 5Wang K,Zhou S,He Y.Growing decision tree on support-less association rules[C]//Proc of 2000 Int Conf on Knowledge Discovery and Data Mining(KDD' 00).Boston,2000-08:256-269.
  • 6Li W,Han J,Pei J.CMAR:accurate and efficient classification based on multiple class-association rules[C]//Proc of 2001 IEEE Int Conf on Data Mining(ICDM'01).San Jose CA,2001-11:369-376.
  • 7Wang J,Karypis G.HARMONY:efficiently mining the best rules for classification[C]//Proc of 2005 SIAM IntConfon Data Mining(SDM'05).Califomia,USA,2005-04.
  • 8Li J,Dong G,Ramamohanarao K,et al.DeEPs:a new instance-based lazy discovery and classification system[J].Machine Learning,2004,54:99-124.
  • 9Veloso A,Meira W,Zaki M J.Lazy association classification[C]//Proc of 2006 IEEE Int Conf on Data Mining(ICDM'06).Hong Kong,2006-10:645-654.
  • 10Wang K,Tang L,Han J.Top down FP-growth for association rule mining[C]//Proc of 6th Pacific Area Conference on Knowledge Discovery and Data Mining(PAKDD'02).Taipei,2002-05:334-340.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部