期刊文献+

基于2DLDA的人脸识别快速算法的研究 被引量:1

The Reaearch of Face Recognition Based on 2DLDA
下载PDF
导出
摘要 二维投影利用表示图像的矩阵直接抽取特征.计算量主要与图像的大小有关,能适用于大类别的人脸识别。针对二维投影抽取出的特征是矩阵,存在特征之间的冗余度大、特征数量多、不利于存储和分类等弱点,该文通过二维投影后的样本再作一次向量形式的特征抽取办法进一步降低二维投影抽取出的特征数量,并缩短了特征识别时间。计算机仿真研究验证了所提出方法的正确性。 Two-dimension LDA (2DLDA) and other two-dimensional projection methods can directly extract features by using original image matrixes. But the features extracted by two-dimensional approaches are still matrixes; it could cause the magnitude of features too much and slow down the classification speed. One new algorithms are used to compress the feature matrixes in this paper. The method combined the virtues of two-dimension method and one-dimension method. Which use one-dimension method to compress the feature matrixes after extracted by 2DLDA.
作者 张博 ZHANG Bo (College of Electrical Engineering,Liaoning University of Technology,Jinzhou 121001 ,China)
出处 《电脑知识与技术》 2009年第1期186-188,共3页 Computer Knowledge and Technology
关键词 人脸识别 特征抽取 主分量分析 二维投影分析 face recognition feature extraction principal component analysis(PCA) two dimensional projection analysis
  • 相关文献

同被引文献9

  • 1温福喜,刘宏伟.基于2D-PCA和2D-LDA的人脸识别方法[J].计算机应用研究,2007,24(8):201-203. 被引量:7
  • 2Hotelling H. Analys is of a complex of statistical varia- bles into principal components [ J ]. Journal of Educa- tional Psychology, 1933 ( 24 ) :417 - 441.
  • 3Roweis S T, Saul L K. Nonlinear dimensionality reduc- tion by locally linear embedding[ J ]. Science, 2000, 290 (5500):2323 -2326.
  • 4Tenenbaum J B, Silva V de, Langfo rd J C. A global geometric framework for nonlinear dimensionality re- duction [ J ]. Science,2000,290 ( 5500 ) : 2319 - 2323.
  • 5Rahimi A, Recht B, Darrell T. Learning to transform time series with a few examples [J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2007,29(10) :1759 - 1775.
  • 6. Liang W, David S. Learning and matching of dynamic shape manifolds for human action recog nition[J]. IEEE Transactions on Image Processing ,2007,16 ( 6 ) : 1646 - 1661.
  • 7胡昭华,宋耀良.基于Autoencoder网络的数据降维和重构[J].电子与信息学报,2009,31(5):1189-1192. 被引量:30
  • 8胡昭华,宋耀良.基于一种连续自编码网络的图像降维和重构[J].数据采集与处理,2010,25(3):318-323. 被引量:9
  • 9尹远,廖敏江,李校林.基于无监督学习的行人检测算法[J].广东通信技术,2015,35(2):43-48. 被引量:2

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部