期刊文献+

局部充分稀疏的欠定时盲信号源分离

Underdetermined Blind Source Separation Based on Locally Sparse Representations
下载PDF
导出
摘要 针对欠定时的盲信号分离,提出了局部充分稀疏条件下估计混叠矩阵A的新算法.该算法不要求源信号所有采样时刻都充分稀疏,先通过搜索,把处于同一直线的向量一一归类,再对所得的类的向量进行处理,把混叠矩阵A确定出来.仿真实验结果表明算法是有效的. It proposes a new algorithm of locally sparse blind source separation for estimating the mixed matrix A. This method doesn' t require all the samples of the sources are strictly sparse. Firstly all the vectors in the same line were searched for and classified. And then the mixed matrix A determined. The simulation illustrates the effectiveness of this algorithm.
作者 何春兰 万哲
出处 《广东工业大学学报》 CAS 2008年第4期61-64,共4页 Journal of Guangdong University of Technology
关键词 盲信号分离 稀疏分量分析 充分稀疏 欠定 blind seurce separation sparse strictly sparse underdetermined
  • 相关文献

参考文献7

  • 1Belouchrani A, Cardoso J F. Maximum likelihood source separation for discrete sources[C]//Proceedings of EUSIP- CO-94 - 7th European Signal Processing Conference. Edinburgh. UK: [s. n.],1994,2:768-771.
  • 2何昭水,谢胜利,傅予力.稀疏表示与病态混叠盲分离[J].中国科学(E辑),2006,36(8):864-879. 被引量:26
  • 3He Z S, Cichocki A. K-EVD Clustering and its Application in Sparse Component Analysis[C]//6th International Conference on Independent Component Analysis and Blind Signal Separation. Charleston : [ s. n. ] ,2006:90-97.
  • 4谢胜利,谭北海,傅予力.基于平面聚类算法的欠定混叠盲信号分离[J].自然科学进展,2007,17(6):795-800. 被引量:7
  • 5肖明,谢胜利,傅予力.欠定情形下语音信号盲分离的时域检索平均法[J].中国科学(E辑),2007,37(12):1564-1575. 被引量:11
  • 6Georgiev P, Theis F, Cichocki A. Sparse component analysis and blind source separation of underdetermined mixtures [ J ]. IEEE Transactions of Neural Networks, 2005, 16 (4) : 992-996.
  • 7Li Y, Andrzej C, Amari S. Analysis of sparse representation and blind source separation [ J ]. Neural Comput, 2004, 16(6): 1193-1234.

二级参考文献16

  • 1章晋龙,谢胜利,何昭水.盲分离问题的可分性理论(英文)[J].自动化学报,2004,30(3):337-344. 被引量:6
  • 2HE Zhaoshui XIE Shengli FU Yuli.Sparsity analysis of signals[J].Progress in Natural Science:Materials International,2006,16(8):879-884. 被引量:10
  • 3HE Zhaoshui XIE Shengli FU Yu.Sparse representation and blind source separation of ill-posed mixtures[J].Science in China(Series F),2006,49(5):639-652. 被引量:24
  • 4Cardoso J F.Blind signal separation:Statistical principles.Proc IEEE (Special Issue on Blind Identification and Estimation),1998,90(10):2009-2026.
  • 5Cichocki A,Amari S.Adaptive Blind Signal and Image Processing:Learning Algorithms and Applications.New York:Wiley,2002.
  • 6Li Y,Wang J.Sequential blind extraction of instantaneously mixed sources.IEEE Trans Signal Process,2002,50(5):997-1006.
  • 7Chen S,Donoho D L,Saunders M A.Atomic decomposition by basis pursuit.SIAM J Sci Comput,1998,20(1):33-61.
  • 8Olshausen B A,Sallee P,Lewicki M S.Learning sparse image codes using a wavelet pyramid architecture.Adv Neural Inform Process Syst,2001,13:887-893.
  • 9Lee T-W,Lewicki M,Girolami M,et al.Blind source separation of more sources than mixtures using overcomplete representations.IEEE Signal Process Lett,1999,6(4):l87-90.
  • 10Zibulevsky M,Pearlmutter B A.Blind source separation by sparse decomposition in signal dictionary.Neural Comput,2001,13(4):863-882.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部