摘要
MATLAB是进行神经网络系统设计及多元统计分析的有力工具.利用MATLAB6.5对月平均降水量的前期预报因子进行主成分分析,实现样本的最优压缩,从而降低样本的维数,建立起基于主成分分析的神经网络广西北部地区5月平均降水预测模型.计算结果表明,基于主成分分析的神经网络模型在预测中与多元回归模型相比有较好效果.
MATLAB is a powerful instrument of designing a neural network system and multivariate statistical analysis. Principle component analysis was employed for the previous forecast factors of monthly mean precipitation by using MATLAB 6.5, and produce optimal compression of samples and reduce dimensions of samples. A neural networks forecast model with the monthly mean rainfall in May in the central part of Guangxi is developed based on principle component analysis. The calculating results show that the model of the neural networks based on Principle component analysis has better effect than the multivariable regression model in forecasting.
出处
《广西师范学院学报(自然科学版)》
2008年第4期46-51,共6页
Journal of Guangxi Teachers Education University(Natural Science Edition)
基金
国家自然科学基金项目(40675023)
广西民族大学青年科研基金项目(2007QN23)
关键词
主成分分析
学习矩阵
BP神经网络
principle component analysis
learning matrix
BP neural networks