期刊文献+

中小型旧桥承载力评估的遗传优化神经网络模型

Evaluation of Load-carrying Capacity of Medium-small Span Old Bridges Based on the Mixed GANN Model
下载PDF
导出
摘要 桥梁承载力的变化总会以各种损伤形式直接或间接的反映。针对旧桥承载力荷载试验评估法费用高、工作量大的不足,建立了以桥梁承载力校验系数η为评价输出指标的中小型旧桥承载力遗传优化神经网络评价模型。应用该模型,直接利用易于采集的8个损伤指标就可以对旧桥承载力进行评价。实例验证表明,该评价模型是一种科学、准确和实用的旧桥承载力评价模型,有着很强的实用价值、经济价值与现实推广意义。 The variability of load-carrying capacity of the bridges always was responded by sorts of damages directly or indirectly.Aiming at the high-expenditure and heavy-workload of loading test,a new GANN model was created.In this model,the load-carrying capacity was evaluated by 8 damage indexes,which could be measured easily.After an evaluation analysis of load-carrying capacity,the result indicates that the evaluation model is scientific,precise and practical.It is worthy to be extended.
出处 《长江大学学报(自科版)(上旬)》 CAS 2008年第4期112-114,共3页 JOURNAL OF YANGTZE UNIVERSITY (NATURAL SCIENCE EDITION) SCI & ENG
关键词 中小型旧桥 承载力评估 评价模型 遗传算法 神经网络 medium-small span old bridges evaluation of load-carrying capacity evaluation models genetic algorithms neural network the mixed GANN model
  • 相关文献

参考文献3

二级参考文献18

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部