期刊文献+

基于支持向量机的欠定盲分离 被引量:4

SVM Based Underdetermined Blind Source Separation
下载PDF
导出
摘要 该文提出了信号稀疏性的新度量方式,在估算出有效源信号的个数后,提取源信号到达方向角度的特征作为训练样本,利用支持向量机理论构造分类超平面,从而实现对观测信号的最优分类。采用加权系数法获得每一类信号的聚类中心,其中对系数权重的学习是自适应的,同时避免了K-均值聚类等方法对初值的敏感性。此外,针对大规模样本点,该文还提供了在线算法。仿真效果说明了此方法的稳定性和鲁棒性。 A new sparse measure of signals is proposed in this paper. After the number of efficient sources is estimated, the observations are classified using Support Vector Machine (SVM) trained through samples which are constructed by the direction angles of sources. Each clustering center is obtained based on the sum of samples belong to the same class with different weights which are adjusted adaptively. It gets out of the trap of the initial values which interfere k-mean clustering seriously. Furthermore, the online algorithm is proposed for large scale samples. Simulations show the stability and robustness of the methods.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第2期319-322,共4页 Journal of Electronics & Information Technology
基金 国家自然科学基金重点项目(U0635001) 国家自然科学基金(60505005 60674033)资助课题
关键词 支持向量机 欠定盲分离 最佳置信度 SVM Underdetermined BSS The best confidence limit
  • 引文网络
  • 相关文献

参考文献12

  • 1Comon P. Independent component analysis: A new concept [J]. Signal Processing, 1994, 36(3): 287-314.
  • 2Xie S L, He Z S, and Fu Y L. A note on Stoners conjecture of blind signal separation [J]. Neural Computation, 2005, 17(2): 321-330.
  • 3Bofill P and Zibulevsky M. Underdetermined blind source separation using sparse representations [J]. Signal Processing, 2001, 81(11): 2353-2362.
  • 4Li Y Q, Cichocki A, and Amari S. Analysis of sparse representation and blind source separation [J]. Neural Computation, 2004, 16(6): 1193-1234.
  • 5Li Y Q, Amari S, and Cichocki A, et al.. Underdetermined blind source separation based on sparse representations [J]. IEEE Trans. on Signal Processing, 2006, 54(2): 423-437.
  • 6Michael S L and Terrence J S. Learning overcomplete representations [J]. Neural Computation, 2000, 12(2): 337-365.
  • 7He Z S and Cichocki A. K-EVD clustering and its applications to sparse component analysis [C]. Independent Component Analysis and Blind Signal Processing, Charleston SC, USA, Mar. 5-8, 2006: 90-97.
  • 8Vapnik V. The Nature of Statistical Learning Theory [M]. New York, Spring Verlag, 1995: 30-105.
  • 9Platt J C. Sequential minimal optimization A fast algorithm for training support vector machines [C]. In: SchOlkopf B, Burges C J C, and Smola A J. (Eds.): Advances in Kernel Methods-Support Vector Learning. MIT Press, Cambridge, MA, 1998: 185-208.
  • 10Xie S L, He Z S, and Gao Y. Adaptive Theory of Signal Processing [M]. 1st ed, Beijing, Chinese Science Press, 2006: 103-129.

同被引文献28

  • 1HE Zhaoshui XIE Shengli FU Yu.Sparse representation and blind source separation of ill-posed mixtures[J].Science in China(Series F),2006,49(5):639-652. 被引量:24
  • 2CARDOSO J F. Super-symmetric decomposition of the fourthorder cumulant tenser: Blind identification of more sources than sensors [ C ]//Proc IEEE ICASSP-91. Piscataway: IEEE, 1991:3109 - 3112.
  • 3SHAMSUNDER S, GIANNAKIS G B. Modeling of non-Gaussian array data using cumulants : DOA estimation of more sources with less sensors [ J ]. Signal Processing, 1993,30 (3) :279 - 297.
  • 4TALEB A, JUTTFEN C. On underdetermined source separation [ C ] // Proc ICASSP. Piscataway : IEEE, 1999 : 1445 - 1448.
  • 5LI Y Q,ANDRZEJ C,AMARI S. Analysis of sparse representation and blind source separation [ J ]. Neural Comput ,2004 ,16 : 1193 - 1234.
  • 6LEE T W, LEWICKI M S, GIROLAMI M, et al. Blind source separation of more sources than mixtures using overcomplete representations [ J ]. Signal Process Lett, 1999,6 ( 4 ) : 87 - 90.
  • 7ZIBULEVSKY M, PEARLMUTTER B A. Blind Source Separation by Sparse Decomposition[J]. Neural Comput,2001,13(4) :863-882.
  • 8BOFILL P,ZIBULEVSKY M. Underdetermined source separation using sparse representations [ J ]. Signal Proeessing, 2001,81 ( 11 ) : 2353 - 2362.
  • 9THEIS F J, JUNG A,PUNTONET C G, et al. Linear geometric ICA: fundamentals and algorithms [ J ]. Neural Computation, 2003, 15 (2) :419 -439.
  • 10LI Y, AMARI S I, CICHOCKI A. Underdetermined blind source separation based on sparse representation[ J]. Signal Processing,2006, 54(2) :423 -437.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部