期刊文献+

一种基于非线性扩散方程和Hausdorff测度理论的SAR图像与光学图像配准方法 被引量:3

Matching Optical Image to SAR Image Using Nonlinear Equation and Hausdorff Distance
下载PDF
导出
摘要 该文提出了一种新的利用非线性扩散方程与Hausdorff测度的合成孔径雷达(SAR)图像与可见光图像的配准算法。在此算法中,首先利用非线性扩散方程的SAR图像分割算法获得SAR图像与光学二值图像中相对应的闭合区域特征,将闭合区域质心坐标重合后,被提取特征可通过Hausdorff测度与遗传算法对图像进行快速粗匹配。在粗配准的基础上最后使用二值图像的相关度来进行精配准。实验结果表明,本文方法鲁棒性好,配准精度高,能自动完成存在较大坐标平移、角度变换、尺度缩放的待配图像的配准。 This paper describes a new method for matching SAR image and optical image. First, regularizing anisotropic heat diffusion equations is used for segmenting closed-boundary regions in SAR image. After superposing the center of mass of closed-boundary regions, Haudorff distance and genetic algorithm are used to determine scaling and rotation parameters respectively. Finally, the affine-transformed result is refined by binary image correlation to achieve high precise registration. Experimental results indicated that this method can perform automatic registration under precision acquirement for images which differ by translation, rotation and scaling.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第2期386-390,共5页 Journal of Electronics & Information Technology
关键词 合成孔径雷达 特征提取 HAUSDORFF距离 遗传算法 图像配准 Synthetic Aperture Radar(SAR) Feature abstract Hausdorff distance Genetic algorithm Imageregistration
  • 相关文献

参考文献13

  • 1Yosi keller and Amir Averbach. Implicit similarity: A new approach to multi-sensor image registration. Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR'03). IEEE, 2003:1-6.
  • 2Yosi Keller. Multisensor image registration via implicit similarity. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2006, 28(5): 794-801.
  • 3Dai Xiaolong and Khopram registration algorithm using S. Afeature-based image improved chain-code representation combined with invariant moments. IEEE Trans. on G.R.S, 1999, 37(5): 2351-2362.
  • 4于秋则,程辉,柳健,田金文,关世义.基于改进Hausdorff测度和遗传算法的SAR图像与光学图像匹配[J].宇航学报,2006,27(1):130-134. 被引量:31
  • 5Stockman G, Kopstein S, and Benett S. Matching images to models for registration and object via clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1982, 4(3): 229-241.
  • 6Weisenseel A and Karl W, et al.. MRF-based algorithm,q for segmentation of SAR images: the Processing of the 1998 International Conference on Image Processing, IEEE, 1998, Vol. 3: 770-774.
  • 7高贵,计科峰,匡纲要,李德仁.基于各向异性热扩散方程的SAR图像分割方法[J].信号处理,2006,22(1):105-109. 被引量:7
  • 8Perona P and Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629-639.
  • 9Struwe M. Variational Methods. Berlin: Springer Verlag, 1996, chapter 3.
  • 10Catte F, Lions P L, Morel J M, and Coil T. Image selective smoothing and edge detection diffusion Ⅱ. SIAM J. Numer. Anal, 1992, 29(1): 182-193.

二级参考文献27

  • 1Chao Xu, etl. SAR Detection of Moving Targets Using Approximate Wavelet Transform and Time-Frequency Analysis, IEEE International Symposium on Cireolts and Systems, June, 9,1997 Hong Kong.
  • 2Brown L G. A survey of image registration tochniques[J]. ACM Computing Surveys, 1992, 24(4) : 325 - 376.
  • 3Candocia F. A similarity measure for stereo feature matching [J].IEEE Transactions on Image Processing, 1997, 6 (10) : 1460 -1464.
  • 4Christmas W.J. Structural matching in computer vision using probabilistic relaxation [J]. IEEE Transaction on PAMI, 1995, 17 ( 8 ) :749 - 764.
  • 5Li H, Manjunath B S and Mitra S J. A contour based approach to multisensor image registration [ J ]. IEEE Trans Image Processing,1995, 4(1): 320- 334.
  • 6Paul Dare a, Ian Dowman. An improved model for automatic featurebased registration of SAR and SPOT images [ J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2001, 56: 13- 28.
  • 7Florence Tupin, Henri Maitre. Detection of linear features in SAR images : application to road network extraction [ J]. IEEE Transactions on Geosciences and remote sensing, 1993, 15 : 850 - 863.
  • 8Huttenlocher D P, Klanderman G A and Rucklidge W J. Comparing images using the Hausdorff distance [ J ]. IEEE Trans Pattern Anal Machine Intelligence, 1993, 15:850-863.
  • 9Dortg-Gyu Sim etl. Object matching algorithms using robust hausdorff distance measures. IEEE Transaction on Image Processing, 1999, 8( 1 ) : 425 - 429.
  • 10Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning[M]. Addison-Wesley, 1989.

共引文献36

同被引文献28

  • 1牛力丕,毛士艺,陈炜.基于Hausdorff距离的图像配准研究[J].电子与信息学报,2007,29(1):35-38. 被引量:21
  • 2Zitova B, Flusser J. Image registration methods: a survey[J]. Image Vision Computing ,2003,21(11) : 977 - 1000.
  • 3Son H J, Kim S H, Kim J S. Text image matching without language model using a Hausdorff distance[J]. Information Processing and Management,2008,44(3) :1189 - 1200.
  • 4Vivek E P, Sudha N. Robust Hausdorff distance measure for face recognition[J]. Pattern Recognition ,2007 ,40(2) :431- 442.
  • 5Park S C, Lee S W. Object tracking with probabilistic Hausdorffdistance matching[J]. Lecture Notes in CoTnputer Science, 2005, 44(1) :233 - 242.
  • 6Huttenlocher D P, Klanderman G A, Rueklidge W J. Comparing images using the Hausdorff distance[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence ,1993,15(9) :850 - 863.
  • 7Dubuisson M P, Jain A K. A modified hausdorff distance for object matching[C]// Proc. of the International Conference on Pattern Recognition, 1994 : 566 - 568.
  • 8Sire D G, Kwon O K, Park R H. Object matching algorithms using robust hausdorff distance measures[J]. IEEE Trans. on Image Processing, 1999,8(3) :425 - 429.
  • 9Dungan K E, Potter L C. Classifying transformation variant attributed point patterns [J]. Pattern Recognition, 2010, 43 (11) :3805 - 3816.
  • 10Chen X D, Ma W Y, Paul J C. Computing the Hausdorff distance between two B-spline curves[J]. Computer Aided Design,2010,42 (12) :1197 - 1206.

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部