期刊文献+

基于信噪比门限判断和小波变换的SAR干涉图滤波法 被引量:1

A SAR Interferogram Noise Reduction Algorithm Based on the SNR Threshold and Wavelet Transform
下载PDF
导出
摘要 该文首先研究了一种基于离散小波变换(DWT)的干涉图滤波算法,对该算法的噪声模型和处理流程进行了详细的分析,并在其基础上做了基于静态小波变换(SWT)的改进。接着利用实测数据对这两种方法做了实验,通过对实验结果的分析,提出了一种高噪声环境下,在保证残点数降低率的同时,还能提高干涉条纹质量的滤波方法。在此滤波方法的基础上,进一步提出了基于信噪比门限判断的干涉图两级处理滤波法,并对其处理流程做了详细的讨论。利用实测数据对该方法进行了仿真,实验结果验证了该方法的有效性。 This paper first introduces a DWT-based noise reduction algorithm, which phase noise model and processing flow is discussed in detail. By using the Static Wavelet Transform (SWT), an amelioration of this algorithm and simulation of both algorithms are made with raw data. Based on the analysis of simulation results, a new scheme, which has good performance both in reducing the phase noise and maintaining the continuity of the interferometric fringes especially in highly noisy region, is addressed. In addition, a SAR interferogram noise reduction algorithm based on the SNR threshold is proposed with detailed flow graph analysis. In the raw-data simulation, the results show that the new algorithm is feasible and effective.
作者 李晨 朱岱寅
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第2期497-500,共4页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60502030) 航空科学基金(05D52027)资助课题
关键词 干涉合成孔径雷达 离散小波变换 静态小波变换:干涉相位图 信噪比 InSAR Discrete Wavelet Transform (DWT) Static Wavelet Transform(SWT) Interferogram SNR
  • 相关文献

参考文献6

二级参考文献91

  • 1[1]J S Lee, K P Papathanassiou et al. A New Technique for Noise Filtering of SAR Interferogram Phase Images[A]. GARSS[C]. 1997.
  • 2[2]G Bo, S Dellepiane, G Beneventano. A Locally Adaptive Noise Filtering Approach for Phase Unwraping Improvement[J]. SPIE,1999,3869:116-126.
  • 3[3]Richard M Goldstein, Charles L Werner. National Aeronautics and Space Administration Technical Support Package, Adaptive Filter of SAR Interferograms. http://www.nasatech.com/TSP/PDFTSP/NPO20440.pdf
  • 4[4]S Mallat. A Theory for Multi-resolution Signal Decomposition: The Wavelet Representation[J]. IEEE Trans. Pattern Anal. Machine intell., 1989, 11: 674-693.
  • 5[5]Samuel Foucher, Goze Bertin Benie, Jean-Marc Boucher. Multiscale MAP Filtering of SAR images[J]. IEEE Transactions on Image Processing,2001, 10(1):49-60.
  • 6[6]D L Donoho, I.M. Johnstone, G. Kerkyacharian, and D. Pichard, Wavelet Shrinkage: Asymptopia, J. R. Statist. Soc. B, vol. 57, no. 2, 301-369, 1995
  • 7[7]Henning Braunisch, Bae-lan Wn,and Jin A. Kong, Phase unwrapping of SAR interferograms after wavelet denoising, IGARSS, 2000
  • 8[8]J S Lee,A simple speckle filtering algorithm for synthetic aperture radar images, IEEE Trans. Acoust., Speech, Signal Processing, 1983,31:85-88
  • 9[9]D T Kuan, A A Sawchuk, T C Strand, P Chavel. Adaptive Restoration of Images with Speckle[J]. IEEE Trans. Acoust., Speech, Signal Processing, 1987,35:373-383.
  • 10[10]G P Nason, B W Silverman. The Stationary Wavelet Transform and Some Statistical Applications, in Wavelets and statistics. Ser. Lecture Notes statist. 103, A. Antoniadis and G. Oppenheim, Eds, New York: Springer-Verlag, 281-299,1995

共引文献52

同被引文献2

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部