摘要
基于Ashrafi的想法,定义了n-正规化子群并对其进行研究。首先由定义得到n-正规化子群的一些基本性质。其次,对于任意的正整数n证明了n-正规化子群的存在性。再次,证明了对于有限群G,若#Norm(G)≤3,则G为幂零群;若假定|G|为奇数,则当#Norm(G)≤4时G为幂零群。最后,证明了若#Norm(G)=2,则G″=1;若#Norm(G)=3且G有交换的Sylow2-子群,则G=1。
Based on Ashrafi's idea, n-normalizer groups are defined and investigated. First, some elementary properties about n-normalizer groups are given. Secondly ,the existence of finite n-normalizer groups for every positive integer n are proved. Thirdly, the nilpotency and derived lengths of 2,3-normalizer groups are investigated. In particular, it is shown that G" = 1 if # Norm (G) =2, and G"= 1 if # Norm (G)=3 and G has abelian Sylow 2-subgroups.
出处
《北京大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2009年第1期6-10,共5页
Acta Scientiarum Naturalium Universitatis Pekinensis
基金
国家重点基础研究发展计划项目(10112121953)
国家自然科学基金重点项目(10631010)资助
关键词
有限群
n-正规化子群
幂零群
导列长
finite groups
n-normalizer groups
nilpotency
derived length