期刊文献+

有限状态马氏过程的自相关函数的单调性(英文)

On the Monotonicity of Autocorrelation Function for Finite State Markov Processes
下载PDF
导出
摘要 使用生成元(转移速率矩阵)的若当分解,给出了以自相关函数描述的可逆性和不可逆性之间的区别。对于有限状态的马氏过程,证明了不可逆性蕴涵着存在状态空间上的实值观测函数,使得它的自相关函数在[0,∞)上不单调,且在某个时间间隔内,它是负值的;而可逆性则蕴涵着状态空间上所有的实值观测函数的自相关函数在[0,∞)上单调,且为正值的。 By using the Jordan decomposition of the generator (transition rate matrix ), the difference in terms of the autocorrelation function between the reversibility and the irreversibility is shown. For a finite state Markov process with continuous time, its irreversibility implies that there exists an observable function on its state space such that its autocorrelation function is nonmonotonic over [0,∞ ) and negative at certain time interval; its reversibility implies that all the autocorrelation functions are monotonic and positive over [0, ∞ ).
作者 陈勇
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第1期11-14,共4页 Acta Scientiarum Naturalium Universitatis Pekinensis
关键词 有限状态马氏过程 自相关函数 可逆(细致平衡) 振荡行为 finite state Markov processes autocorrelation function reversible (detailed balance) oscillatory behavior
  • 相关文献

参考文献8

  • 1Lu H P, Xun L, Xie X S. Single-molecule enzymology dynamics. Science, 1998, 282:1877-1882
  • 2Schenter G K, Lu H P, Xie X S. Statistical analysis and theoretical models of single-molecule enzymology dynamics. J Phys Chem A, 1999, 103 (49): 10477-10488
  • 3Qian H, Elson E L. Single-molecule enzymology: Stochastic Michaelis- Menten kinetics. Biophysical Chemistry, 2002, 101-102:565-576
  • 4Van Kampen N G. Stochastic Processes in Physics and Chemistry. New York: North-Holland Publishing, 1992
  • 5Qian M, Qian M P, Zhang X J. Fundamental facts concerning reversible master equations. Phys Lett A, 2003, 309 (5-6): 371-376
  • 6Chen Y, Chen X, Qian M P. Green-Kubo formula, autocorrelation function and fluctuation spectral for finite Markov chains with continuous time. J Phys A: Math Gen, 2006, 39 (11) : 2539-2550
  • 7Zwanzig R. Nonequilibrium Statistical Mechanics. Oxford: Oxford University Press, 2001
  • 8Risken H. The Fokker-Plank Equation. 2nd ed. Berlin: SpringerVerlag, 1989

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部