摘要
使用生成元(转移速率矩阵)的若当分解,给出了以自相关函数描述的可逆性和不可逆性之间的区别。对于有限状态的马氏过程,证明了不可逆性蕴涵着存在状态空间上的实值观测函数,使得它的自相关函数在[0,∞)上不单调,且在某个时间间隔内,它是负值的;而可逆性则蕴涵着状态空间上所有的实值观测函数的自相关函数在[0,∞)上单调,且为正值的。
By using the Jordan decomposition of the generator (transition rate matrix ), the difference in terms of the autocorrelation function between the reversibility and the irreversibility is shown. For a finite state Markov process with continuous time, its irreversibility implies that there exists an observable function on its state space such that its autocorrelation function is nonmonotonic over [0,∞ ) and negative at certain time interval; its reversibility implies that all the autocorrelation functions are monotonic and positive over [0, ∞ ).
出处
《北京大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2009年第1期11-14,共4页
Acta Scientiarum Naturalium Universitatis Pekinensis
关键词
有限状态马氏过程
自相关函数
可逆(细致平衡)
振荡行为
finite state Markov processes
autocorrelation function
reversible (detailed balance)
oscillatory behavior