期刊文献+

基于量子粒子群算法的收敛性研究 被引量:4

Analyzing Convergent Ability of QPSO Algorithm
下载PDF
导出
摘要 对基于量子行为的粒子群算法(QPSO)的收敛性进行分析。QPSO算法不仅参数个数少,随机性强,并且能覆盖所有解空间,保证算法的全局收敛性。通过四个经典的基准函数对算法进行测试,将QPSO算法与PSO算法进行深入比较。通过实验结果表明,QPSO算法在收敛性能上大大优于PSO算法。 An opening and practical solution, that is Quantum- behaved Particle Swarm Optimization algorithm. Not only parameters of QPSO are few and randomicity of QPSO is strong, but also QPSO cover with all the space of solution and guarantee global convergence of algorithms. Analyzing Convergent Ability of Quantum- behaved Particle Swarm Optimization Algorithm by four classical benchmark functions. Experiment results show that QPSO algorithm provides a much better effect than PSO algorithm on convergent Ability of algorithm.
出处 《微计算机信息》 2009年第6期218-219,共2页 Control & Automation
基金 功能基因肽分离纯化粒子群算法优化的研究 基金颁发部门:国家自然科学基金委(60474030)
关键词 粒子群算法 量子粒子群优化算法 收敛性 基准函数 Particle Swarm Optimization algorithm Quantum-Behaved Particle Swarm Optimization algorithm Convergent Ability Benchmark Functions
  • 相关文献

参考文献7

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2郭志坚,孙晓君.基于粒子群算法的随机和模糊混合机会约束规划研究[J].微计算机信息,2006(01Z):174-175. 被引量:8
  • 3曹志松,朴英.基于混合粒子群算法的PID参数寻优[J].微计算机信息,2007,23(31):1-2. 被引量:9
  • 4ennedy J , Eberhart R. Part icle sw arm op tim izat ion [A . P roc IE E E Int Conf on N eu ral N etw orks [C.Perth, 1995. 194221948.
  • 5berhart R, Kennedy J. A new opt im izer using part iclesw arm theory [A . P roc 6th Int S ymp osium on M icroM aeh ine and H um an S cience[C. N agoya, 1995. 39243.
  • 6Sun J,Xu W B.A global search strategy of quantum-behaved particle warm optimization [C].Singapore: Proceedings of IEEE conferenceon Cybernetics and Intelligent Systems,2004:111-116.
  • 7Sun J,Feng B,Xu W B.Particle swarm optimization with particles having quantum behavior [C].Portland: Proceedings of 200g Congress on Evolutionary Computation,2000:325-331.

二级参考文献16

  • 1敬勇.天然气发动机仿人智能模糊混合控制器的研究[J].微计算机信息,2005,21(1):3-4. 被引量:14
  • 2何晋元,周国鹏.用于控制器参数寻优的目标函数研究[J].微计算机信息,2006,22(03S):86-88. 被引量:6
  • 3Charnes A,Cooper W W,Chance -constrained programming.ManagementScience,1959,6(1):73-79
  • 4Liu B,Iwamura K.Chance constrained programming with fuzzy parameters[J].Fuzzy Sets & systems,1998,94(2):227-237.
  • 5Kennedy J, Eberhart R. Particle swarm optimization [A]. Proc of Int'l Conf on Neural Networks [C]. Piscataway: IEEE Press, 1995. 1942-1948.
  • 6Eberhart R, Kennedy J. A new optimizer using particle swarm theory [A]. Proc of Int'l Symposium on Micro Machine and Human Science [C]. Piscataway: IEEE Service Center, 1995. 39-43.
  • 7Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [A].In: Furuhashi T,Mckay B,eds. Proc Congress on Evolutionary Computation [C]. Piscataway: IEEE Press, 2001.
  • 8Lovbjerg M, Rasmussen T K, Krink T. Hybrid particle swarm optimiser with breeding and subpopulations [A]. In: Spector L,eds. Proc of Genetic and Evolutionary Computation Conference [C]. San Fransisco: Morgan Kaufmann Publishers Inc, 2001. 469-476.
  • 9Carlisle A, Dozier G. Adapting particle swarm optimization to dynamic environments [A]. In: Arabnia H R,eds. Proc of Int'l Conf on Artificial Intelligence [C]. Las Vegas: CSREA Press, 2000. 429-434.
  • 10Parsopoulos K E, Vrahatis M N. Particle swarm optimization method in multiobjective problems [A]. In: Panda B,eds. Proc of ACM Symposium on Applied Computing [C]. Boston: ACM Press, 2002. 603-607.

共引文献412

同被引文献40

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部