期刊文献+

基于改进FCM聚类的BT-SVM多类分类算法 被引量:5

Multi-class Classification of BT-SVM Based on Improved FCM Clustering
下载PDF
导出
摘要 针对二叉树支持向量机在多类分类问题上存在的不足,利用粒子群算法对模糊C均值聚类算法进行了改进,在此基础上,结合二叉树支持向量机,构建了偏二叉树多类分类算法。该方法在二叉树各节点处根据聚类中心所对应的样本构造学习样本集和最优分类超平面,保障了聚类精度,有效地提高了测试正确率。实验表明,本文提出BT-SVM多类分类算法的测试正确率要高于同类多类分类算法。 Deflective binary tree of multi-class classification algorithm based on Binary Tree Support Vector Machine (BT-SVM) and fuzzy C-means Clustering algorithm, which overcomes defects of proposed measures effectively is put forward. The BT-SVM muticlassification is formed'by learning sample classes and the optimal hyperplanes which are constructed in the nodes of binary tree by the samples corresponding to clustering centers. It is shown that BT-SVM muti-classification is capable of improving clustering precision by example.
作者 权文 王晓丹
出处 《微计算机信息》 2009年第6期230-232,共3页 Control & Automation
基金 基金申请人:王晓丹 项目名称:集成差异性度量及应用研究 基金颁发部门:陕西省科技厅(2007F19)
关键词 支持向量机 模糊C均值聚类 粒子群 多类分类 二叉树 SVM fuzzy C-means algorithm Particle Swarm Optimization muti-classification Binary Tree
  • 相关文献

参考文献8

  • 1Bennett K P, Blue J A.A Support Vector Machine Approachto Decision Trees [A].ln Proceedings of JCNN'98[C].Alaska:Anchorage 1997.12396-24011.
  • 2许磊,张凤鸣.基于PSO的模糊聚类算法[J].计算机工程与设计,2006,27(21):4128-4129. 被引量:17
  • 3Kennedy J,Eberhart R C.Partiele Swarm Optimization [A].Proceedings of the IEEE International Cotfference on Neural Networks, 1995:1942-1948.
  • 4张磊,夏士雄,牛强.基于SVM二叉决策树方法的矿井提升机故障诊断[J].微计算机信息,2008,24(10):198-199. 被引量:4
  • 5Sch lkopf B,Smola A.Williamson R C et.al.New Support vector algorithms[J].Neural Computation,2000,12(5):1207-1245.
  • 6Mangasarian O L and Musk:ant. D R.Successive Oven'elaxation for Support Vector Machine [J]. IEEE Transactions on Neural Networks, 1999,10:1032-1037.
  • 7Bennett K P, Blue J A.A Support Vector Machine Approachto Decision Trees [A].In Proceedings of JCNN'98[C].Alaska:Anchorage, 1997.12396-24011.
  • 8Chih-Wei Hsu,Chih-Jen Lin.A Comparison of Methods for Multiclass Support Vector Machines. IEEE Transactions on Neural Networks,2002,13(2):415-425.

二级参考文献12

  • 1杨奎河,单甘霖,赵玲玲.基于支持向量机的旋转机械故障诊断研究[J].微计算机信息,2006(12S):184-185. 被引量:2
  • 2[2]Neilo Cristianini,John Shawe-Taylor.An Introduction to Support Vector Machines and Other Kernel-based Leaming Methods[M].Cambridge University Press,2000.
  • 3[6]Hsu C W,Lin C J.A comparison of methods for multi-class support vector machines.IEEE Transactions on Neural Networks,2002,13(2):415-425,
  • 4Chen-Yi Chen,Fun Ye.Particle swarm optimization algorithm and its application to clustering analysis[C].Taipei,Taiwan:Proceedings of the IEEE International Conference on Networking,Sensing and Control,2004.789-794.
  • 5Gao Xinbo,Ji Hongbing,Xie Weixin.A novel FCM clustering algorithm for interval-valued data and fuzzy-valued data[C].Proceedings of ICSP,2000.1551-1555.
  • 6Elbeltagi E,Hegazy T,Grierson D.Comparison among five evolutionary-based optimization algorithms[J].Advanced Engineering Informatics,2005,19(1):43-53.
  • 7Yu Jian,Huang H K,Tian S F.An efficient optimality test for the fuzzy C-means algorithms[C].IEEE World Congress on Computational Intelligence,2000.86-91.
  • 8Paterlini S,Krink T.High performance clustering with differential evolution[C].Proceedings of the IEEE Congress on Evolutionary Computation,2004.2004-2011.
  • 9张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2279
  • 10张洪刚,刘刚,郭军.FCM-VKNN聚类算法的研究[J].自动化学报,2002,28(4):631-636. 被引量:6

共引文献19

同被引文献42

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部