期刊文献+

基于Brushlet和RBF网络的SAR图像分类 被引量:3

SAR image classification using complex feature of Brushlet and RBF neural network
下载PDF
导出
摘要 针对SAR图像纹理特征丰富的特点,本文提出一种新的SAR图像分类方法:通过提取Brushlet变换的能量及相位信息作为SAR图像的纹理特征,然后输入径向基函数RBF网络对图像进行分类。Brushlet变换为复值函数,具有方向信息,因此对分析富含方向信息的纹理图像十分有效,而同时提取其能量及相位特征则更优。RBF网络学习速度快,不易陷入局部极小,是一种有效的分类器。实验表明,基于Brushlet复特征和RBF网络的方法能够获得较高的分类率,性能优于传统方法。 As SAR image has rich texture feature, a new method of SAR image classification is proposed, which uses RBF neural network and the energy and phase information of Brushlet as texture feature. Brushlet transform is a complex value function with orientation information. It's very efficient for texture image analysis, and better to extract the complex feature. RBF network is an effective classifier for fast learning and avoiding local minimum. Using the Brushlet complex feature of energy and phase as the input of RBF network, experiments on SAR image classification show that this method outperforms the traditional methods.
出处 《微计算机信息》 2009年第6期295-297,共3页 Control & Automation
关键词 SAR图像分类 Brushlet复特征 RBF网络 SAR image classification Brushier complex feature RBF network
  • 相关文献

参考文献6

二级参考文献23

  • 1[2]Broomhead,DS.,Lowe,D.:Multivariable Functional Interpolationand Adaptive Networks.Complex System,Vo1.2,(1988)321-355
  • 2Baraldi A and Parmiggian F. An investigation of the texture characteristics associated with Gray Level Co-occurrence Matrix statistical parameters [J]. IEEE Trans. on Geoscience and Remote Sensing, 1995, 33(2): 293-303.
  • 3Weldon T, Higgins W E, and Dunn D F. Efficient Gabor-filter design for texture segmentation. Pattern Recognition, 1996, 29(12): 2005-2016.
  • 4Laine A and Fan J. Texture classification by wavelet packet signatures. IEEE Trans. on Pattern Anal. Machine Intell., 1993, 15(11): 1186-1191.
  • 5Meyer F G and Coifman R R. Brushlets: A tool for directional image analysis and image compression. Appl. Comput. Harmon. Anal., 1997, 4(2): 147-187.
  • 6Candes E J. Ridgelets: theory and applications. [Ph.D.dissertation]. Stanford Univ. Standrod. CA. (1998).
  • 7Candes E and Donoho D. Curvelets. Tech. Rep. Stanford Univ. Stanford, CA. (1999).
  • 8Velisavljevic V, Beferull-Lozano B, Vetterli M, and Dragotti P L. Approximation power of directionlets. Proc. on ICIP-2005, Genova, Italy, September 2005: 741-744.
  • 9Chen Chibiao, Lin Jun, and Chan K L. Texture discrimination using Brushlet features. 2001 IEEE Pacific Rim Conference on Communications, Computers and signal Processing. PACRIM 2001. Victoria, BC, Canada. Aug. 2001, Vol. 1: 55-58.
  • 10Shan Tan, Zhang Xiangrong, and Jiao Licheng. A Brushlet-based feature set applied to texture classification. CIS 2004, LNCS 3314: 1175-1180.

共引文献31

同被引文献14

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部