期刊文献+

一种用于高动态GPS频率估计的滤波算法 被引量:3

Filtering algorithm used for high dynamic GPS frequency estimation
下载PDF
导出
摘要 针对常用高动态GPS(G lobal Positioning System)频率估计算法扩展卡尔曼滤波(EKF,Extended Kalman Filter)的缺陷,提出了一种新的称为简化无迹高斯粒子滤波(SUGPF,Simplified Unscented Gaussian Particle Filter)的算法.SUGPF将卡尔曼滤波(KF,Kal-man Filter)、无迹卡尔曼滤波(UKF,Unscented Kalman Filter)与高斯粒子滤波(GPF,GaussianParticle Filter)三者相结合.在时间更新阶段,用KF的方法更新预测分布;在测量更新阶段,用UKF的方法得到重要采样函数,并用GPF的方法更新后验分布.仿真结果表明:与EKF和UKF相比,SUGPF性能更优越,功能更全面,在高斯与非高斯观测噪声环境下均能取得与GPF类似的良好性能,并且其计算复杂度低于GPF. Aiming at the drawbacks of the extended Kalman filter (EKF) which is the widely used GPS frequency estimation algorithm in high dynamic circumstance, a novel filtering algorithm called simplified unscented Gaussian particle filter (SUGPF) was proposed. The SUGPF is the combination of Kalman filter ( KF), unscented Kalman filter (UKF) and Gaussian particle filter (GPF). In time update step, KF methodology was used to update the predictive distributions. In measurement update step, the UKF methodology was used to obtain the important sampling function, and the posterior distributions were updated by using the methodology of GPF. The simulation results indicate that the SUGPF has improved performance and versatility over the EKF and UKF, under both Gaussian and non-Gaussian observation noise condition, SUGPF can achieve good performance which is similar as that of the GPF, and the computational complexity of the SUGPF is lower than that of the GPF.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2009年第1期23-27,共5页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金资助项目(60602046)
关键词 全球定位系统 粒子滤波 卡尔曼滤波 global positioning system particle filter Kalman filter
  • 相关文献

参考文献11

  • 1Vilnrotter V A, Hinedi S, Kumar R. Frequency estimation techniques for high dynamic trajectories[ J]. IEEE Trans on Aerospace and Electronic Systems, 1989, 25 (4) : 559 - 577.
  • 2Agurre S, Hinedi S. Two novel automatic frequency tracking loops[J]. IEEE Trans on Aerospace and Electronic Systems, 1989. 25(5) : 749 -760.
  • 3Hurd W, Statman J I, Vilnrotter V A. High dynamic GPS receiver using maximum likelihood estimation and frequency tracking [ J ]. IEEE Trans on Aerospace and Electronic Systems, 1987, 23(4) : 425 -436.
  • 4Kumar R. Fast frequency acquisition via adaptive least-square algorithm[J]. IEE Proceedings Pt F, 1989, 136(4): 155- 160.
  • 5李小民,刘晖,郑利龙,张其善.高动态环境扩频系统伪码延时的精确估计方法[J].北京航空航天大学学报,2000,26(2):129-132. 被引量:1
  • 6胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 7Wan E A, Van Der Merwe R. The unscented Kalman filter for nonlinear estimation [ C ]//Proceedings of IEEE Symposium 2000 on Adaptive Systems for Signal Processing, Communications and Control. Lake Louise: IEEE Standard Office, 2000: 153 - 158.
  • 8刘旭,张其善,杨东凯.一种用于GPS/DR组合定位的非线性滤波算法[J].北京航空航天大学学报,2007,33(2):184-187. 被引量:20
  • 9Kotecha J H, Djuric P M. Gaussian particle filtering[J]. IEEE Trans on Signal Processing, 2003, 51 (10) : 2592 -2601.
  • 10Zhuang W H, Tranquilla J. Digital baseband processor for the GPS receiver modeling and simulations [ J ]. IEEE Trans on Aerospace and Electronic Systems, 1993, 29 (4) : 1343 - 1349.

二级参考文献11

  • 1王晓湘,学位论文,1998年
  • 2Zhuang W,IEEE Transaction AES,1993年,29卷,4期,1343页
  • 3宋文尧,卡尔曼滤波,1991年
  • 4Julier S,Uhlmann J K.A new approach for filtering nonlinear systems[C]//The Proceedings of the American Control Conference.[S.l.]:IEEE Press,1995:1628-1632
  • 5Wan E A,Merwe R.The unscented kalman filter for nonlinear estimation[C]//Proc of IEEE Symposium 2000 on Adaptive Systems for Signal Processing,Communications,and Control Symposium.[S.l.]:IEEE Standard Office,2000:153-158
  • 6Wan E A,Merwe R.The square-root unscented kalman filter for state and parameter-estimation[C]//Proceedings.(ICASSP '01) 2001 IEEE International Conferenc.[S.l.]:IEEE Press,2001:3461-3464
  • 7Zhou H R,Kumar K S P.A current statistical model and adaptive algorithm for estimating maneuvering targets[J].Journal of Guidance,Control and Dynamics,1984,7(5):596-602
  • 8房建成,申功勋,万德钧.自适应卡尔曼滤波器在陆地车辆导航中的应用[J].北京航空航天大学学报,1999,25(2):235-239. 被引量:9
  • 9常青,郑平方,柳重堪,张其善.车载GPS/DR组合导航系统数据融合算法研究[J].通信学报,2000,21(2):42-48. 被引量:24
  • 10寇艳红,张其善,李先亮.车载GPS/DR组合导航系统的数据融合算法[J].北京航空航天大学学报,2003,29(3):264-268. 被引量:18

共引文献311

同被引文献15

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部