摘要
Accurate and real-time classification of network traffic is significant to network operation and management such as QoS differentiation, traffic shaping and security surveillance. However, with many newly emerged P2P applications using dynamic port numbers, masquerading techniques, and payload encryption to avoid detection, traditional classification approaches turn to be ineffective. In this paper, we present a layered hybrid system to classify current Internet traffic, motivated by variety of network activities and their requirements of traffic classification. The proposed method could achieve fast and accurate traffic classification with low overheads and robustness to accommodate both known and unknown/encrypted applications. Furthermore, it is feasible to be used in the context of real-time traffic classification. Our experimental results show the distinct advantages of the proposed classifi- cation system, compared with the one-step Machine Learning (ML) approach.
Accurate and real-time classification of network traffic is significant to network operation and management such as QoS differentiation, traffic shaping and security surveillance. However, with many newly emerged P2P applications using dynamic port numbers, masquerading techniques, and payload encryption to avoid detection, traditional classification approaches turn to be ineffective. In this paper, we present a layered hybrid system to classify current Internet traffic, motivated by variety of network activities and their requirements of traffic classification. The proposed method could achieve fast and accurate traffic classification with low overheads and robustness to accommodate both known and unknown/encrypted applications. Furthermore, it is feasible to be used in the context of real-time traffic classification. Our experimental results show the distinct advantages of the proposed classification system, compared with the one-step Machine Learning (ML) approach.
基金
Supported in part by the National 863 Project of China (No.2006AA01Z232)
Zhejiang Natural Science Founda-tion (No.Y1080935)
Research Innovation Program Project for Graduate Students in Jiangsu Province ( No.CX07B_110zF)