期刊文献+

PBX有效弹性性能研究进展 被引量:4

Progress in Predicting the Effective Elastic Properties of PBX
下载PDF
导出
摘要 高聚物粘结炸药(PBX)是一种颗粒高度填充的含能复合材料,其单质炸药晶体的体积百分含量通常达到了85%以上。在室温和低应变率条件下,炸药晶体与粘结剂两相模量对比可达3~4个数量级,PBX的这两个特点使传统复合材料相关理论不再适用。因此,PBX有效弹性性能的模拟与预测对复合材料力学和细观力学提出了巨大挑战。本文介绍了国内外在PBX有效弹性性能模拟与预测方面所进行的工作,对各种预测方法的优缺点以及应用前景进行了简要的评述,指出了PBX有效性能模拟与预测需要解决的问题以及下一步工作的重点。 Polymer bonded explosives are particulate composites containing elastic particles in a viscoelastic binder. The particles occupy an extremely high fraction of the volume, often greater than 85%. Under low strain rate loading and at about room temperature,the elastic modulus of the particles can be four order of magnitude higher than that of the binder. These two characteristics make effective elastic properties predict more difficultly. As a result, PBXs provide unique challenges for micromechanical modeling. Some mieromechanical-based methods for the determination of mechanical properties of PBX were introduced, the advantages/disadvantages and the prospects of these methods were reviewed briefly. Three-dimensional models with damage,using computed tomography images and simulating manufacturing process are suggested to be the key point of future work.
出处 《含能材料》 EI CAS CSCD 北大核心 2009年第1期119-123,共5页 Chinese Journal of Energetic Materials
关键词 固体力学 高聚物粘结炸药(PBX) 细观力学 配方设计 有效性能 体积模量 剪切模量 solid mechanics polymer bonded explosive (PBX) micromechanics formulation effective property bulk modulus shear modulus
  • 相关文献

参考文献30

  • 1刘文辉,张新明,张淳源.微观结构对复合材料弹性有效性能的影响[J].工程力学,2005,22(S1):16-19. 被引量:7
  • 2Biswajit Banerjee, Daniel O Adams. Mieromechanics-based determination of effective elastic properties of polymer bonded explosives [ J ]. Physica B,2003,338 : 8 - 15.
  • 3Biswajit Banerjee,Daniel O Adams. On predicting the effective elastic properties of polymer bonded explosives using the recursive cell methods[ J]. Solid and structure,2004,41 : 481 - 509.
  • 4Biswajit Banerjee. Micromechanies-based prediction of themoelastic properties of high energy materials [ D ]. Utah: The University of Utah, 2002.
  • 5Hill R. Elastic properties of reinforced solids: some theoretical principles[J]. Mech Phys Solids,1963,11 : 357 -372.
  • 6Hashin Z, Strikman S. A variational approach to the theory of the elastic behavior of muhiphase materials[ J]. Mech Phys Solids, 1963, 11: 137-140.
  • 7Milton G W. Bounds on the electromagnetic,elastic and other properties of two-composite materials [J]. Int Engng Sci, 1981,8 : 542 - 545.
  • 8Bedrov D,Ayyagari C,Smith G D. Molecular dynamics simulations of HMX crystal polymorphs using a flexing molecule force field. 1999, Personal Communication.
  • 9Hashin Z. The elastic moduli of heterogenerous materials[J]. Appl Mech, 1962,29 : 143 - 150.
  • 10Markov K Z. Elementary micromeehanics of heterogeneous media. In Heterogeneous Media[ J]. Micromechanics Modeling Methods and Simulations ,2000 : 1 - 162.

二级参考文献4

共引文献6

同被引文献23

  • 1陈鹏万,戴开达,黄风雷,丁雁生.Ultrasonic Evaluation of the Impact Damage of Polymer Bonded Explosives[J].Journal of Beijing Institute of Technology,2004,13(3):242-246. 被引量:3
  • 2胡更开,侯敬春.复合材料力学性能细观预测[J].北京理工大学学报,1995,15(3):265-270. 被引量:4
  • 3Hill R. Elastic properties of reinforced solids: some theoretical principles[J]. J Mech Phys Solids, 1963, 11: 357 - 372.
  • 4Mishnaevsky L L, Schmauser S. Continuum mesomechanical finite element modeling in materials development: a state-of-the-art review[J]. Appl Mech Rev, 2011,54:49 - 66.
  • 5Banerjee B, Adams D O. On predicting the effective elastic properties of polymer bonded explosives using the recursive cell methods[J]. Int J Solids Struct, 2004,41: 481 - 509.
  • 6Annapragada S R, Sun D W, Garimella S V. Prediction of effective thermo-mechanieal properties of particulate composites[J]. Comp Mater Sci, 2007,40 ; 255 - 266.
  • 7Wu Y Q, Huang F L. A micromeehanical model for predicting combined damage of particles and interface debonding in PBX explosives [J]. Mech Mater, 2009, 41:27 -47.
  • 8Barua A, Zhou M. A lagrangian framework for analyzing microstructural level response of polymer- bonded explosives [J]. Modelling Simul Mater Sci Eng, 2011,19..1 - 24.
  • 9Kanit T, Forest S, Galliet I, et al. Determination of the size of the representative volume element for random composites: statistical and numerical approach [J]. Int J Solids Struct, 2003,40:3647 - 3679.
  • 10LU Jing-ping. Evaluation of the thermochemical code-CHEETAH 2.0 for modeling explosives performance[R]. DSTO Aeronauti- cal and Maritime Research Laboratory. 2001.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部