期刊文献+

关于矩形节点上二元有理插值的注记

Note to bivariate rational interpolation on rectangular grids
下载PDF
导出
摘要 文章给出了一种可以直接计算基于矩形节点的二元有理插值函数的分母在节点处的值;进而判断相应的二元有理插值函数是否存在,如果存在时,给出它的具体表达式;最后利用差商的知识对文中的方程组进行简化,与已有结果相比,大大减少了计算量。 This paper presents a method for directly computing the denominator values of bivariate rational interpolants on the rectangular grids and determining whether or not the corresponding expression of the bivariate rational interpolant exists. And if it does exist, its concrete expression is given. By using the knowledge of difference quotient, the described equation system is simplified, and a lot of computing is reduced in comparison with the results in related literature.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期282-285,共4页 Journal of Hefei University of Technology:Natural Science
基金 安徽省自然科学基金资助项目(070416227) 合肥工业大学学生创新基金资助项目(xs08079)
关键词 存在性 二元有理插值函数 差商 existence bivariate rational interpolation function difference quotient
  • 相关文献

参考文献8

  • 1朱晓临.一种求二元有理插值函数的方法[J].大学数学,2003,19(1):90-95. 被引量:12
  • 2Plezzi M, Ranga A Sri. On the denominator values and bary-centric weights of rational interpolants[J]. J Comput Appl Math,2007,200: 576-590.
  • 3Zhu Xiaolin,Zhu Gongqin. A method for drieetly finding the denominator values of rational interpolants[J]. J Comput Appl Math, 2002,148 : 341- 348.
  • 4Werner W. Polynomial interpolation.. Lagrange versus Newton[J]. Math Comp, 1984,43 : 205-217.
  • 5Schneider C, Werner W. Some new aspects of rational inter-polation[J]. Math Comp, 1986,47 : 285-299.
  • 6Wuytack L. On osculatory rational interpolation problem [J]. Math Comput, 1975,29 : 837-843.
  • 7Berrut J P, Mittelmann H D. Matrices for direct determination of barycentric weights of rational interpolation[J]. J Comput Appl Math, 1997,78 : 355- 3701
  • 8Wuytack L. On the aspects of the rational interpolation problem[J]. SIAMJ Numer Anal, 1974, (11) : 52-60.

二级参考文献2

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部