期刊文献+

基于遗传算法的DFRM极性转换 被引量:2

DFRM polarity conversion based on genetic algorithm
下载PDF
导出
摘要 n变量的逻辑函数具有2n个固定极性,而每个极性对应不同的DFRM(Dual Forms of Reed-Muller)逻辑展开式,因此极性直接影响着DFRM电路的面积和功耗。通过对DFRM逻辑展开式和极性转换算法的研究,本文成功地将遗传算法应用于DFRM逻辑电路最佳极性的搜索。对10个较大规模的MCNC Benchmark电路测试表明,所提算法搜索到的最佳极性相对应的DFRM电路,与极性0时的DFRM电路相比,面积和功耗的平均节省分别达到了75.0%和65.2%。 As n-variable logic function has 2n fixed polarities and each polarity corresponds to different DFRM (Dual Forms of Reed-Muller) logical expression, polarity is directly related to the area and power dissipation of DFRM circuit. By investigating the DFRM logical expression and the polarity conversion algorithm, this paper successfully applies the genetic algorithm to searching the best polarity of DFRM circuit. The results of testing ten large-scale circuits from MCNC Benchmark indicate that this algorithm is highly effective for searching the best polarity, that is, the DFRM circuits under the polarity searched by the proposed algorithm have achieved average area-saving and power-saving by 75.0% and 65.2%, resnectivelv, compared with those circuits under polarity 0.
出处 《电路与系统学报》 CSCD 北大核心 2009年第1期54-58,共5页 Journal of Circuits and Systems
基金 国家自然科学基金资助项目(60776022 60273093) 浙江省科技计划项目(2008C21166) 宁波市自然科学基金资助项目(2008A610005) 浙江省教育厅科研项目(20070859)
关键词 DFRM 遗传算法 XNOR/OR 极性转换 低功耗 DFRM genetic algorithm XNOR/OR polarity conversion low power
  • 相关文献

参考文献4

二级参考文献20

  • 1徐宗本,高勇.遗传算法过早收敛现象的特征分析及其预防[J].中国科学(E辑),1996,26(4):364-375. 被引量:99
  • 2Gantovnik,Vladimir B,Anderson-Cook,Christine M et al.A genetic algorithm with memory for mixed discrete-continuous design optimization[R].Technical Report TR-03-12,Computer Science,Virginia Tech, 2003.
  • 3Zbigniew Michalewicz.Genetic Algorithms + Data Structures=Evolution Programs[M].New York : Springer-Verlag, 1996.
  • 4Whitley D.The GENITOR Algorithm and Selection Pressure:Why Rank-Based Allocation Reproduction Trials is Best[C].In:Schaffer J ed.Proceeding of the 3rd International Conference on Genetic Algorithm,Morgan Kaufmann Publishers, 1989.
  • 5Goldberg D E.Genetic Algorithms in Search Optimization and Machine Leaming[M].Massachusetts:Addison-Wesley Press,1989.
  • 6Herrera F, Lozano M.Adaptation of genetic algorithm parameters based on fuzzy logic controllers[C].In:Herrera F,Verdegay JL eds.Genetic Algorithms and Soft Computing,Physica-Verlag(Studies in Fuzziness and Soft Computing,Vol.8),1996:95-125.
  • 7Elmihoub T,Hopgood A A,Nolle L et al.Performance of hybrid genetic algorithms incorporating local search[C].In: Horton G Ed.18th European Simulation Multiconference(ESM2004),Magdeburg,Germany,2004:154-160.
  • 8Caroline Ravise ,Michele Sebag.An advanced evolution should not repeat its past errors[C].In:Thirteenth International Conference on Machine Learning, 1996.
  • 9Gantovnik VB,Anderson-Cook CM,Gurdal Z et al.A Genetic Algorithm with Memory for Mixed Discrete-Continuous Design Optimization[J].Journal of Computers & Structures, 2003 ; 81.
  • 10Koziel S, Michalewicz Z. Evolutionary algorithms, homomorphous mappings,and constrained parameter optimization[J].Evolutionary Computation, 1999;7(1):19-44.

共引文献31

同被引文献26

  • 1K Roy, S C Prasad. Low-power CMOS VLSI circuit design [M]. Canada: simultaneously, 2000.
  • 2P Balasubramanian, D A Edwards, C H Narayanan. Low power synthesis of XOR/XNOR intensive combinational logic [A]. Proceedings of Canadian Conference on Electrical and Computer Engineering [C]. Canada, 2007. 243-246.
  • 3H Rahaman, D K Das, B B Bhattacharya. Easily testable realization of GRM and ESOP networks for detecting stuck-at and bridging faults [A]. Proceedings of the 1EEE International Conference on VLSI Design [C]. 2004. 487-492.
  • 4张小颖,王伶俐,吴文晋,等.扩展Toffoli门及其在多输出电路设计中的应用[J].计算机工程与应用学报,2008,45(2):88-91..
  • 5C Tsui, M M Sandowska. Technology mapping for low power [A]. Proceedings of the 33rd IEEE/ACM International Conference DAC [C]. USA, 1996.68-73.
  • 6U Narayanan, C L Liu. Low power logic synthesis for XOR based circuits [A]. Proceedings of IEEE/ACM International Conference on Computer-aided Design [C]. 1997. 570-574.
  • 7H Zhou, D F Wong. Optimal low power XOR gate decomposition [A]. Proceedings of Design Automation Conference [C]. 2000. 104-107.
  • 8C J Liao, C T Tseng, P Luarn. A discrete version of particle swarm optimization for flowshop scheduling problems [J]. Computers and Operations Research, 2007, 34(10): 3099-3111.
  • 9M Maitra, A Chatterjee. A hybrid cooperative-comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding [J]. Expert Systems with Applications, 2008, 34(2): 1341-1350.
  • 10E Pourjafari, H Mojallali. Predictive control for voltage collapse avoidance using a modified discrete multi-valued PSO algorithm [J]. ISA Transactions, 201 I, 50(2): 195-200.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部