期刊文献+

基于操作轨迹模型的非线性预测控制算法 被引量:1

Nonlinear model predictive control based on operating-trajectory model
下载PDF
导出
摘要 针对工业过程的非线性,本文首先提出了一种操作轨迹非线性模型的辨识方法:根据调度变量的操作轨迹,选取若干个典型工作点;在各个典型工作点,辨识各自的线性模型;根据测试数据以及过渡数据,得到全局插值非线性模型。在此基础上,本文进一步提出一种基于操作轨迹模型的非线性预测控制算法,并采用多步线性化方法进行问题求解。由于仅需要在典型工作点上进行测试,降低了全局建模的辨识成本,而且控制品质好,仿真结果表明了该算法的有效性。 Nonlinear model predictive control based on operating-trajectory model is proposed. In nonlinear process identification, the so-called operating-trajectory model approach is used. Firstly, typical working-points are selected based on operating-trajectory of scheduling variable; Secondly, linear models are identified using data sets at various working-points exclusive transition data; Finally, the LPV model is identified by interpolating the linear models using total data. Further, nonlinear model predictive control based on operating-trajectory model is proposed. The control action is computed via multi-step linearization method of nonlinear optimization problem. The method uses low cost tests and keeps better control performance. Simulation verifies the effectiveness of the method.
出处 《电路与系统学报》 CSCD 北大核心 2009年第1期59-65,58,共8页 Journal of Circuits and Systems
基金 国家自然科学基金项目(60804023 60704029) 国家863重点项目课题(2007AA041402)
关键词 非线性预测控制 操作轨迹模型 多步线性化 nonlinear model predictive control operating-trajectory model multi-step linearization method
  • 相关文献

参考文献11

  • 1Qin s J, Badgwell T A. A survey of industrial model predictive control technology [J]. Control Engineering Practice, 2003, 11 (7): 733-764.
  • 2Doyle F J, Ogunnaike B A, Pearson R K. Nonlinear model-based control using second-order Volterra models [J]. Automatiea, 1995, 31(5): 697-714.
  • 3Zhu Y C. Hammerstein model identification for control using ASYM [J]. International Journal of Control, 2000, 73(18): 1692-1702.
  • 4Zhu Y C. Estimation of an N-L-N Hammerstein-Wiener model [J]. Automatica, 2002, 38(9): 1607-1614.
  • 5Ljung L. System Identification:Theory for the User [M]. Prentice-Hall, Upper Saddle River, NJ, 2nd edition, 1999.
  • 6Overschee P V, Moor B D. Subspace identification for linear systems: Theory implementation applications [M]. Dordrecht, Kluwer Academic Publishers, 1996.
  • 7Zhu Y C. Multivariable process identification for MPC: the asymptotic method and its applications [J]. Journal of Process Control, 1998, 8(2): 101-115.
  • 8Senthil R, Janarthnan K, Prakash J. Nonlinear state estimation using fuzzy Kalman filter [J]. Industrial Engineering Chemistry Reaseareh, 2006, 45: 8678-8688.
  • 9Ricker N L, Lee J H. Nonlinear modeling and state estimation for the Tennessee Eastman challenge process [J]. Computers chem. Engng, 1995, 19(9): 983-1005.
  • 10Jaisinghani R, Ray W H. On the dynamic behaviour of a class of homogeneous continuous stirred tank polymerization reactors [J]. Chem. Engng Sel, 1977, 32: 811-825.

同被引文献12

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部