期刊文献+

基于逆向建模和光纤光栅测量的风扇叶片的应力分析 被引量:1

Stress Analysis of Electric Fan Blade Based on Backward Model Building and the Fiber-Optic Grating Measurement
下载PDF
导出
摘要 通过对研究对象风扇叶片进行三维坐标测量并将其测量结果导入PRO/E 3.0中进行CAD逆向建模,便可还原叶片模型.将所得到的叶片模型导入有限元分析软件ANSYS,定义好材料属性和边界条件进行应力应变分析,从而得到叶片在旋转离心作用力和流体载荷下的变形和应力分布.为验证对比,在叶片4个不同目标位置贴上光纤传感器进行应力应变测量.测量结果表明光纤测量目标位置应力应变结果和有限元分析数据基本一致.从而验证了光栅测量方法的可行性和逆向建摸的可靠性,并依此确定了叶片的危险部位即位于叶片根部弯曲较大的边缘地带,为叶片的进一步优化设计及其在线监测提供了理论依据. By measuring the three-dimensional coordinates of fan blade and backward building its model by CAD software with the measuring data, the fan blade model was regenerated. And then the deformation and strain of fan blade under the centrifugal acting force of revolution and fluid loads were obtained by analyzing the model with the finite element analysis software. Experimentally the target locations of the four different were affixed with fiber-optic grating sensors for theirs' stress-strain measurements. The experimental results were consistent with the data from the model, which verified the feasibility of the grating measuring method and the reliability of backward building the model by the CAD software. At the same time, it was ascertained that the roots of fan blade are the weak parts. The study can provide theoretical basis for the optimal design of a fan blade and the online monitor.
出处 《测试技术学报》 2009年第1期28-32,共5页 Journal of Test and Measurement Technology
基金 国家自然科学基金资助项目(50775167)
关键词 逆向建模 有限元分析 目标位置 应力分布 光纤光栅测试 backward model-building FEA (finite element analysis ) target locations stress distribution fiber-optic grating sensor
  • 相关文献

参考文献3

二级参考文献15

  • 1席光,卢金铃,祁大同.混流泵三元叶片优化设计方法研究[J].工程热物理学报,2004,25(6):952-955. 被引量:14
  • 2梁长垠,孙光.基于光纤传感器的多通道油位测量系统[J].微计算机信息,2005,21(3):105-106. 被引量:9
  • 3李天池,王健,秦廷镐.气敏传感器自动测试系统的设计[J].微计算机信息,2005,21(06S):103-105. 被引量:2
  • 4赵宏声,王先彬,向光,曹和,吴宿松,赵丽芳,姜德生,天自遐.混凝土结构内的螺旋线微弯增敏光纤传感器[J].武汉工业大学学报,1995,17(1):51-53. 被引量:4
  • 5[1]Kosuke Ashihara, Akira Goto. Turbomachinery Blade Design Using 3-D Inverse Design Method CFD and Optimization Algorithm. In: Proceeding of ASME Turbo.Expo.. 2001. 2001-GT-0358, 1-9
  • 6[2]Carlo Cravero-Antonio Satta. A Navier-Stokes Based Strategy for the Aerodynamic Optimization of a Turbine Cascade Using a Genetic Algorithm. In: Proceeding of ASME Turbo. Expo.. 2001. 2001-GT-0508, 1-8
  • 7[3]S Pierret, R A Van den Braembussche. Turbomachinery Blade Design Using a Navier-Stokes Solver and Artificial Neural Network. Journal of Turbomachinery, Transactions of the ASME. 1999, 121(1): 326-332
  • 8Mengistu Temesgen,Ghaly Wahid.Single and Multipoint Shape Optimization of Gas Turbine Blade Cascades.AIAA 2004-4446
  • 9Papila Nilay,Shyy Wei.Shape Optimization of Supersonic Turbines Using Response Surface and Neural Network Methods.AIAA 2001-1065
  • 10Patnaik S N,Coroneos R M.A Subsonic Aircraft Design Optimization with Neural Network and Regression Approximators.AIAA 2004-4606

共引文献16

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部