期刊文献+

基于滑模变结构的火炮位置伺服系统故障诊断

Fault Diagnosis Based on Sliding Mode Variable Structure for An Artillery Position Servo System
下载PDF
导出
摘要 针对一类非线性系统,并考虑含有不知其上下界的未知输入扰动,提出了一种故障诊断方案.利用滑模变结构中的等值控制方法设计了滑模状态观测器;利用自适应方法实现了对故障的重构;采用Lyapunov方法对观测器和故障重构的收敛性进行了证明.为减少滑模运动的抖动,设计了一个模糊神经网络对观测器参数实时调整,并给出网络的学习算法.将本文提出的方法在火炮伺服系统中应用,证明了该方法的有效性. A fault diagnosis proposal for a class of nonlinear system has been presented in this paper. The studied uncertain nonlinear system is subject to input disturbance with unknown bound. First, two observers were designed for fault reconstruction. One of them was a sliding mode observer which was designed by means of specific equivalent control methodology. On the basis of that, another adaptive observer was designed to carry out reconstruction of fault. The convergence of both of them was proved by means of Lyapunov method. Second, in order to reduce the chattering of sliding mode motion, a design of fuzzy neural network and its learning algorithm was proposed to on-line adjust the related parameters. Finally, the results of some numerical simulations on an artillery position servo system verify the validity of the proposed approaches.
出处 《测试技术学报》 2009年第1期89-94,共6页 Journal of Test and Measurement Technology
基金 国家自然科学基金资助项目(60774069) 湖南省自然科学基金资助项目(07JJ3118&06JJ2064)
关键词 故障的重构 观测器 滑模 模糊神经网络 fault reconstruction observers sliding mode fuzzy neural networks
  • 相关文献

参考文献17

  • 1Alessandro C, Domenico F, Giuseppe F. Robust fault detection of uncertain linear systems via quasi-LMIs[J]. Automatica, 2008, 44: 289-295.
  • 2单政辉,周志杰,胡昌华,刘光斌.一类不确定非线性系统的半定量故障预报方法[J].测试技术学报,2008,22(2):175-179. 被引量:1
  • 3Yan X G, Edwards C. Nonlinear robust fault reconstruction and estimation using a sliding mode observer[J]. Automatica, 2007, 43(9):1605-1614.
  • 4Huang J, Fukuda T, Matsuno T. Model-based intelligent fault detection and diagnosis for mating electric connectors in robotic wiring harness assembly systems[J]. IEEE/ASME Transactions on Mechatronics, 2008, 13(1): 86-94.
  • 5Weitian C,Saif M. Novel sliding mode observers for a class of uncertain systems[C]. American Control Conference, 2006: 14-16.
  • 6Kok Yew Ng, Chee Pin Tan, Edwards C, et al. New results in robust actuator fault reconstruction for linear uncertain systems using sliding mode observers[J]. Int. Journal of Robust and Nonlinear Control, 2007, 17: 1294- 1319.
  • 7Edwards C, Chee Pin Tan. Sensor fault tolerant control using sliding mode observers [J]. Control Engineering Practice, 2006, 14: 897-908.
  • 8Floquet T, Barbot J P, Perruquetti W, et al. On the robust fault detection via a sliding mode disturbance observer [J]. International Journal of Control, 2004, 10: 622-629.
  • 9Weitian Chen, Mehrdad Sail. Sliding mode output estimator based fault detection, isolation and estimation for systems with unmatched unknown inputs[C]. Proceedings of the 2006 IEEE International Conference on Control Applications, 2006: 4-6.
  • 10Xing Gang Yan, Edwards C. Nonlinear robust fault reconstruction and estimation using a sliding mode observer[J]. Automatica, 2007, 43: 1605-1614.

二级参考文献12

  • 1周志杰,胡昌华,周东华.基于非解析模型的动态系统故障预报技术[J].信息与控制,2006,35(5):608-613. 被引量:15
  • 2叶银中.动态系统的故障检测与诊断方法[J].信息与控制,1985,(6):27-34.
  • 3Chen J,Patton R J.Robust model-based fault diagnosis for dynamic system[M].London:Kluwer Academic Publishers,1999:65-108.
  • 4Henry D,Zolghadri A,Castang F,et al.A new multi-objective filter design for guaranteed robust FDI performance[C].Proceedings of 40th IEEE on Conference on Decision & Control.Orlando,Florida,2001:173-178.
  • 5YANG Ran,XU Xiao-ming,ZHANG Wei-dong.A new approach to robust filtering with specified error variance constraints[C].Intelligent Control and Automation,2000.Proceedings of the 3rd World Congress on Hefei,P.R.China,2000,(3):2235-2239.
  • 6Filho M R,Munaro C J.Robust H2/H∞-state estimation with error variance constraints for continuous-time systems with time-varying uncertainties[C].Proceedings of the 2001 IEEE International Conference on5-7 Sept,2001:1065-1070.
  • 7Fernando M, Agustin J, Basil M H, Diego R L, Ramon G. The fuzzy Kalman filter: State estimation using possibilistic techniques[J]. Fuzzy Sets and Systems, 2006, 157(16): 2145-2170.
  • 8Shen Q, Leitch R. Fuzzy qualitative simulation[J]. IEEE Transaction on Systems, Man, and Cybernetics, 1993, 23 (4) : 1038-1061.
  • 9陈新海.最佳估计理论[M].北京:北京航空航天学院出版社,1987.35-66.
  • 10陈敏泽,周东华.一种基于强跟踪滤波器的自适应故障预报方法[J].上海海运学院学报,2001,22(3):35-40. 被引量:14

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部