期刊文献+

TE模式下子域二阶精度FDTD算法 被引量:1

Second-order accurate FDTD technique with subgridding modeling in TE mode
下载PDF
导出
摘要 提出了一种子域时域有限差分法(FDTD)的改进算法,针对研究区域介质填充不均匀的情况,在不同介质区域粗细网格合理划分的同时,应用介质交界面处二阶精度FDTD算法,计算交界面上切向电场.从积分形式麦克斯韦方程出发,通过非均匀网格的建立和辅助磁场的引入,实现介质交界面上切向电场的二阶精度.与传统的子域算法相比,改进算法在不增加计算量、计算时间和编程复杂度的前提下有效地提高了计算精度.最后对几种波导结构进行了模拟,结果表明改进算法的计算精度明显高于传统的子域算法和常规的FDTD算法. A modified subgridding finite difference time domain method (FDTD) is proposed. For the study of the computational domain filled with different dielectric materials and the reasonable division of coarse and fine grids in different dielectric regions, the second-order accurate FDTD technique at the dielectric interface is employed to analyze the tangential electric field components at the interface. Based on Maxwell's equations in integral form, the second-order accuracy of the tangential electric fields at the dielectric interface is obtained by the establishment of the nonuniform grids and the introduction of the auxiliary magnetic fields. The overall computational accuracy of the modified subgridding algorithm can be improved effectively, without additional computational capacity, consumed time and complexity in programming. Finally, the numerical simulations for some waveguide structures are carried out to validate the better accuracy of the method proposed in this paper than that of the traditional subgridding method and the standard FDTD method.
作者 丁海 褚庆昕
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2009年第1期162-165,176,共5页 Journal of Xidian University
基金 国家自然科学基金资助(60171011 60571056)
关键词 时域有限差分法(FDTD) 介质交界面 二阶精度 子域 波导 finite difference time domain method (FDTD) dielectric interface second order accuracy subgridding method waveguide
  • 相关文献

参考文献8

  • 1Zivanovic S S, Yee K S, Mei K K. A Subgridding Method for the Time-Domain Finite Difference Method to Solve Maxwell's Equation [J]. IEEE Trans on Microwave Theory Tech,1991, 39(3): 471-479.
  • 2Prescott D T, Shuley N V. A Method for Incorporating Different Sized Cells into the Finite-Difference Time-Domain Analysis Technique [J]. IEEE Microwave Guided Wave Lett, 1992, 2(11): 433-436.
  • 3Chu Q X. 2nd-Order Accurate FDTD Equations at Dielectric Interface [C]//Proceedings. of Asia-Pacific Microwave Conference. Kyoto: IEEE, 2002: 1212-1214.
  • 4Chu Q X, Ding H. Second-Order Accurate FDTD Equations at Dielectric Interfaces for TE Modes [C]//2005 IEEE Antennas and Propagation Society International Symposium. Washington: IEEE, 2005:205-208.
  • 5Chu Q X, Ding H. Second-Order Accurate FDTD Equations at Dielectric Interface [J]. Microwave Opt Technol Lett, 2007, 49(12): 3001-3011.
  • 6Ding H, Chu Q X. The Application of The Second-Order Accurate FDTD Techniques at The Interface in Three Dimensional Case[J]. Microwave Opt Technol Lett, 2008, 50(4) : 871-875.
  • 7Chu Q X, Ding H. Second-Order Accurate FDTD Equations at Magnetic Media Interfaces [J]. IEEE Trans on Magnetic, 2006, 42(10): 3141-3143.
  • 8褚庆昕,冯英.分析非均匀填充圆柱介质谐振器的二阶精度FDTD公式[J].电波科学学报,2003,18(6):652-654. 被引量:4

二级参考文献6

  • 1[1]D Kajfez and P Guillon. Dielectric resonators[B]. MA:Artech House,1986.
  • 2[2]A Navarro,M J Nunez,and E Martin.Study of TE0 and TM0 modes in dielectric resonators by a FDTD method coupled with the discrete fourier transform [J]. IEEE Trans. Microwave Theory Tech,1991,39(1):14~17.
  • 3[3]Yinchao Chen and Qunsheng Cao. Tuning effect analysis of cylindrical dielectric-loaded resonators using efficient 2D-CFDTD method[C].Xi′an,Proc.of ISAE′97,1998,505~508.
  • 4[4]X Zhang and K K Mei. Time-domain finite difference approach to the calculation of the frequency-dependent characteristics of microstrip discontinuities[J].IEEE Trans. Microwave Theory Tech,1988,36(12):1775~1787.
  • 5[5]K P Hwang and A C Cangellaris. Effective permittivities for second-order accurate FDTD equations at dielectric interface [J].IEEE Microwave Guided Wave Lett,2001,11(1):158~160.
  • 6[6]T Hirono, Y Shibata,W W Lui,S Seki,and Y Yoshikuni. The second-order condition for the dielectric interface orthogonal to the Yee-lattice axis in the FDTD scheme [J].IEEE Microwave Guided Wave Lett,2000,10(2):359~361.

共引文献3

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部